Difference between revisions of "User:Nik"

From Ferienserie MMP2
Jump to: navigation, search
(Created page with "=== Solution for i) ===")
 
Line 1: Line 1:
 +
Let
 +
$$ \Phi \in C^\infty(\mathbb{R}^n) $$
 +
have the property that the system
 +
$$p_i = \frac{\partial}{\partial q_i} \Phi (q, \widetilde{q}) $$
 +
has a unique smooth solution
 +
$$ \widetilde{q} = \widetilde{q} (q,p) $$
 +
 +
Define
 +
$$ \widetilde{p_i}(q,p) = - \frac{\partial}{\partial \widetilde{q_i}} \Phi (q, \widetilde{q}) | _{\widetilde{q}= \widetilde{q}(q,p)} $$
 +
 +
Let $$ \{\cdot,\cdot\} $$ be the Poisson bracket, such that
 +
$$ \{f,g\} = \sum_{j=1}^n \frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q_j} $$
 +
 +
Show that: $$\\$$
 +
i)
 +
$$ \{\widetilde{q_i} (q,p), \widetilde{q_j} (q,p)\} = \{\widetilde{p_i} (q,p), \widetilde{p_j} (q,p)\} = 0 $$
 +
 +
ii)
 +
$$ \{\widetilde{q_i} (q,p), \widetilde{p_j} (q,p)\} = \delta_{ij} $$
 +
 +
 
=== Solution for i) ===
 
=== Solution for i) ===
 +
=== Solution for ii) ===

Revision as of 09:19, 28 December 2014

Let $$ \Phi \in C^\infty(\mathbb{R}^n) $$ have the property that the system $$p_i = \frac{\partial}{\partial q_i} \Phi (q, \widetilde{q}) $$ has a unique smooth solution $$ \widetilde{q} = \widetilde{q} (q,p) $$

Define $$ \widetilde{p_i}(q,p) = - \frac{\partial}{\partial \widetilde{q_i}} \Phi (q, \widetilde{q}) | _{\widetilde{q}= \widetilde{q}(q,p)} $$

Let $$ \{\cdot,\cdot\} $$ be the Poisson bracket, such that $$ \{f,g\} = \sum_{j=1}^n \frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q_j} $$

Show that: $$\\$$ i) $$ \{\widetilde{q_i} (q,p), \widetilde{q_j} (q,p)\} = \{\widetilde{p_i} (q,p), \widetilde{p_j} (q,p)\} = 0 $$

ii) $$ \{\widetilde{q_i} (q,p), \widetilde{p_j} (q,p)\} = \delta_{ij} $$


Solution for i)

Solution for ii)