Difference between revisions of "Talk:Aufgaben:Problem 15"

From Ferienserie MMP2
Jump to: navigation, search
Line 35: Line 35:
 
'''Proof:'''
 
'''Proof:'''
  
''Case 1:'' \( x \in \: ]0;k[: \)
+
''Case 1:'' \( x \in \: ]0;k[ \)
  
 
The arithmetic-geometric mean equality says that \( \forall x_{1},...,x_{n} \geq 0 \) it holds: $$ (x_{1}...x_{n})^{\frac{1}{n}} \leq \dfrac{x_{1}+...+x_{n}}{n} $$
 
The arithmetic-geometric mean equality says that \( \forall x_{1},...,x_{n} \geq 0 \) it holds: $$ (x_{1}...x_{n})^{\frac{1}{n}} \leq \dfrac{x_{1}+...+x_{n}}{n} $$
Line 45: Line 45:
 
$$\Rightarrow (1-\dfrac{x}{k})^{k} \leq (1 - \dfrac{x}{k+1})^{k+1}  $$
 
$$\Rightarrow (1-\dfrac{x}{k})^{k} \leq (1 - \dfrac{x}{k+1})^{k+1}  $$
  
\textbf{Remark:} we don't have any problem of sign or multivalue with the k+1-root because $ (1-\dfrac{x}{k})^{k} $ takes only real positive value, since $ 0 < x < k $.\\
+
Where we don't have any problem with the k+1-root because \( (1-\dfrac{x}{k})^{k} \) only takes real positive values, since \( 0 < x < k. \)
  
\textbf{Case 2:} $ x \in [k;k+1[$\\
+
''Case 2:'' \( x \in [k;k+1[ \)
The inequality holds since $ f_{k}(x) = 0 $ and $ f_{k+1}(x) = x^{t-1}(1 - \dfrac{x}{k+1})^{k+1} $ is a positve function $ \forall  x \in [k;k+1[$.\\
+
  
\textbf{Case 3:} $ x \in [k+1;\infty[$\\
+
The inequality holds since \( f_{k}(x) = 0 \) and \( f_{k+1}(x) = x^{t-1}(1 - \dfrac{x}{k+1})^{k+1} \) is a positve function \( \forall  x \in [k;k+1[. \)
Both the functions are equal to zero so the inequality still holds.\\
+
 
 +
''Case 3:'' \( x \in [k+1;\infty[ \)
 +
 
 +
Both the functions are equal to zero so the inequality still holds.
 
==Part b)==
 
==Part b)==
 +
 
===Problem===
 
===Problem===
 
Use the monotone convergence theorem to show that $$ \Gamma(t) = \lim_{k \to \infty} \frac{k!k^{t}}{t(t+1)...(t+k)}, t>0 $$
 
Use the monotone convergence theorem to show that $$ \Gamma(t) = \lim_{k \to \infty} \frac{k!k^{t}}{t(t+1)...(t+k)}, t>0 $$

Revision as of 16:04, 28 December 2014

Let \(t>0\) fixed. Define \( f(x) := x^{t-1}e^{-x} \), non-negative function on (0,\(\infty\)).

Part a)

Problem

For \(k = 1,2,... \) let $$ f_k(x) = \left\{ \begin{array}{l l} x^{t-1}(1-\frac{x}{k})^{k} & \quad 0<x<k\\ 0 & \quad k\leq x<\infty\end{array} \right. $$ Show that \(f_k(x) \rightarrow f(x) \) and \(f_k(x) \leq f_{k+1}(x), \forall x>0.\)

Hint: use the arithmetic-geometric mean inequality. You may not use the definition of the exponential function as a limit.

Solution

To show:

$$ \lim_{k \to \infty} f_{k}(x) = f(x), \forall x>0 $$

Proof:

Take any \( x \in (0 ; \infty) \) and \( k > x \) ; consider:

$$ \ln((1-\frac{x}{k})^{k}) = k\ln(1-\frac{x}{k}) = \frac{x}{x}k(\ln(1-\frac{x}{k})-\ln(1)) = -x\dfrac{(\ln(1)-\ln(1-\frac{x}{k}))}{\frac{x}{k}} $$


The last fraction is the difference quotient of ln evaluated in 1, thus:

$$ \lim_{k \to \infty} \ln((1-\frac{x}{k})^{k}) = -x\dfrac{d}{dx}\ln(x)\mid_{x=1} = -x $$

Since exp is continuous, we can "bring the limes inside":

$$ \Rightarrow \lim_{k \to \infty} f_{k}(x) = x^{t-1} \lim_{k \to \infty} \exp ( \ln((1-\frac{x}{k})^{k}) = x^{t-1} \exp(\lim_{k \to \infty} ln((1-\frac{x}{k})^{k}) = x^{t-1} e^{-x} = f(x) \: \blacksquare $$


To show:

$$ f_{k}(x) \leq f_{k+1}(x), \forall x > 0 $$

Proof:

Case 1: \( x \in \: ]0;k[ \)

The arithmetic-geometric mean equality says that \( \forall x_{1},...,x_{n} \geq 0 \) it holds: $$ (x_{1}...x_{n})^{\frac{1}{n}} \leq \dfrac{x_{1}+...+x_{n}}{n} $$

Consider:

$$ ((1-\dfrac{x}{k})^{k}\cdot1)^{\frac{1}{k+1}} \leq^{AM-GM} \dfrac{1}{k+1}(k(1-\dfrac{x}{k})+1) = \dfrac{1}{k+1}(k + 1 - x) = (1 - \dfrac{x}{k+1}) $$

$$\Rightarrow (1-\dfrac{x}{k})^{k} \leq (1 - \dfrac{x}{k+1})^{k+1} $$

Where we don't have any problem with the k+1-root because \( (1-\dfrac{x}{k})^{k} \) only takes real positive values, since \( 0 < x < k. \)

Case 2: \( x \in [k;k+1[ \)

The inequality holds since \( f_{k}(x) = 0 \) and \( f_{k+1}(x) = x^{t-1}(1 - \dfrac{x}{k+1})^{k+1} \) is a positve function \( \forall x \in [k;k+1[. \)

Case 3: \( x \in [k+1;\infty[ \)

Both the functions are equal to zero so the inequality still holds.

Part b)

Problem

Use the monotone convergence theorem to show that $$ \Gamma(t) = \lim_{k \to \infty} \frac{k!k^{t}}{t(t+1)...(t+k)}, t>0 $$ where \( \Gamma(t) \) is the Euler Gamma function.

Hint: consider \( I_{k} = k^{t} \int_0^1 \! u^{t-1}(1-u)^{k}du \).

Solution