Difference between revisions of "Talk:Aufgaben:Problem 12"

From Ferienserie MMP2
Jump to: navigation, search
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
=Exercise=
+
In the second solution. For proofing the bilinearity of anti-commutator it is sufficient to show linearity in the first argument. Then use that it is symmetric.
 
+
  [[User:Beni|Beni]] ([[User talk:Beni|talk]]) 16:42, 24 June 2015 (CEST)
Consider a mass \(m>0\) in the Newtonian gravitational field. Show that the gravitational force strength on the mass can be written as
+
\begin{equation*}
+
|\vec{F}| = \frac{{L_3}^2}{mr^4} \bigg| \frac{d^2 r}{d\phi^2} - \frac{2}{r} \left( \frac{dr}{d\phi} \right)^2 - r \bigg|
+
\end{equation*}
+
where \( \vec{L} = (L_1,L_2,L_3)\) is the angular momentum and \((r,\phi)\) are the polar coordinates.\\
+
 
+
Hint: show first that the total energy can be written as \(H = \frac{p_r^2}{2m} + \frac{p_\phi^2}{2mr^2} + U(r)\), where \(p_r,p_\phi\) are the generalized momenta defined as \(p_r = m\dot{r}, \; p_\phi = mr^2\dot{\phi}\) and \(U(r)\) is the potential. Then obtain an expression for \(-\partial U / \partial r\) from the equations of motion.
+
 
+
=Solution=
+
 
+
In polar coordinates is \( \vec{x} = \begin{pmatrix} r \cos \phi \\ r \sin \phi \end{pmatrix} \).
+
Then we can calculate \( \dot{\vec{x}} \) depending on \( \dot{r} \) and \( \dot{\phi} \):
+
\begin{equation*}
+
\dot{\vec{x}} = \frac{\partial \vec{x}}{\partial r} \dot{r} + \frac{\partial \vec{x}}{\partial \phi} \dot{\phi} =
+
\begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}\dot{r} + \begin{pmatrix}- r \sin \phi \\ r \cos \phi\end{pmatrix} \dot{\phi}
+
\end{equation*}
+
 
+
The kinetic energy is then: \(T = \frac{1}{2} m |\dot{\vec{x}}|^2 
+
= \frac{1}{2} m \left( \dot{r}^2 +  r^2 \dot{\phi}^2 \right)\)
+
 
+
The total energy is \( H = T + U(r) \) where \( U(r) \) is the potential caused by the gravitational force \( \vec{F} \) with the relation:
+
\begin{equation*}
+
\vec{F} = -\vec{\nabla} U(r)
+
= - \begin{pmatrix} \frac{\partial}{\partial r} \\
+
\frac{1}{r} \frac{\partial}{\partial \phi} \end{pmatrix} U(r)
+
= \begin{pmatrix} - \frac{\partial U(r)}{\partial r} \\ 0 \end{pmatrix}
+
\end{equation*}
+
 
+
We define the generalized momenta \( p_r = m \dot{r} \) and \(p_\phi = m r^2 \dot{\phi} \) and get:
+
\begin{equation*}
+
H = \frac{p_r^2}{2m} + \frac{p_\phi^2}{2mr^2} + U(r)
+
\end{equation*}
+
 
+
Consider the Hamliton equations:
+
\begin{equation*}
+
\dot{r} = \frac{\partial H}{\partial p_r} = \frac{p_r}{m}
+
\end{equation*}
+
\begin{equation*}
+
\dot{\phi} = \frac{\partial H}{\partial p_\phi} = \frac{p_\phi}{mr^2}
+
\end{equation*}
+
\begin{equation}
+
\dot{p}_r = -\frac{\partial H}{\partial r} = \frac{p_\phi^2}{mr^3} - \frac{\partial U(r)}{\partial r}
+
\end{equation}
+
\begin{equation*}
+
\dot{p}_\phi = -\frac{\partial H}{\partial \phi} = 0
+
\end{equation*}
+
 
+
From the third equation we get:
+
\begin{equation}
+
- \frac{\partial U(r)}{\partial r} = \dot{p}_r - \frac{p_\phi^2}{mr^3} =
+
m \ddot{r} - m r \dot{\phi}^2
+
\end{equation}
+
 
+
We know that for Newtonian gravitational fields the angular momentum \( \vec{L} \) is conserved. If we expand our two-dimensional system by a third axis the angular momentum would have the form \( \vec{L} = \begin{pmatrix} 0 \\ 0 \\ L_3 \end{pmatrix} \) because the masspoint only moves on the xy-plane. Also we can identify \( L_3 \) with the generalized momentum \( p_\phi \) of the azimuthal angle.
+
The equation turns to:
+
 
+
\begin{equation}
+
- \frac{\partial U(r)}{\partial r} =
+
m \ddot{r} - \frac{{L_3}^2}{mr^3}
+
\end{equation}
+
 
+
First a bit preparing:
+
\begin{equation}
+
\dot{\phi} = \frac{L_3}{m r^2}
+
\end{equation}
+
\begin{equation}
+
\dot{\phi}^2 = \frac{{L_3}^2}{m^2 r^4}
+
\end{equation}
+
\begin{equation}
+
\ddot{\phi} = (-2) \frac{L_3}{m r^3} \cdot \frac{dr}{dt}
+
\end{equation}
+
 
+
Now we say \(r\) is depending on \( \phi(t) \Rightarrow r\equiv r(\phi(t)) \)
+
Consider:
+
\begin{equation}
+
\frac{dr}{dt}(\phi(t)) \overset{\text{[chain rule]}}{=} \frac{dr}{d\phi}(\phi(t)) \underbrace{ \frac{d\phi}{dt}(t) }_{ \dot{\phi} } = \frac{L_3}{m r^2} \frac{dr}{d\phi}
+
\end{equation}
+
with product and chain rule we get:
+
$$\begin{align}
+
\frac{d^2r}{dt^2}
+
&=\frac{d}{dt}\left(\frac{dr}{d\phi}\right)\cdot\frac{d\phi}{dt}+\frac{dr}{d\phi}\cdot\frac{d}{dt}\left(\frac{d\phi}{dt}\right)\\
+
&=\bigg(\frac{d^2r}{d\phi^2}\underbrace{\frac{d\phi}{dt}\bigg)\cdot\frac{d\phi}{dt}}_{\dot{\phi}^2}
+
+\frac{dr}{d\phi}\underbrace{\frac{d^2\phi}{dt^2}}_{\ddot{\phi}}\\
+
&=\frac{{L_3}^2}{m^2r^4}\frac{d^2r}{d\phi^2}
+
+\frac{dr}{d\phi}\bigg((-2)\frac{L_3}{mr^3}\cdot\underbrace{\frac{dr}{dt}}_{\frac{dr}{dt}(\phi(t))}\bigg)\\
+
&=\frac{{L_3}^2}{m^2r^4}\frac{d^2r}{d\phi^2}
+
+(-2)\frac{L_3}{mr^3}\cdot\frac{L_3}{mr^2}\left(\frac{dr}{d\phi}\right)^2\\
+
&=\frac{{L_3}^2}{m^2 r^4} \left(\frac{d^2r}{d\phi^2}
+
-\frac{2}{r}\left(\frac{dr}{d\phi}\right)^2\right)
+
\end{align}$$
+
 
+
We can now replace this in the equation:
+
$$\begin{align}
+
-\frac{\partial U(r)}{\partial r} & =
+
m\ddot{r} -\frac{{L_3}^2}{mr^3}\\ & =
+
\frac{{L_3}^2}{m r^4} \left( \frac{d^2 r}{d\phi ^2}
+
-\frac{2}{r} \left( \frac{dr}{d\phi} \right)^2 -r \right)
+
\end{align}$$
+
 
+
We notice that \( \frac{{L_3}^2}{m r^4} >0 \) and can proof the statement:
+
$$\begin{align}
+
|\vec{F}|
+
&= \bigg|-\frac{\partial U(r)}{\partial r} \bigg| \\
+
&= \frac{{L_3}^2}{m r^4} \bigg| \frac{d^2 r}{d\phi ^2}
+
-\frac{2}{r} \left( \frac{dr}{d\phi} \right)^2 -r \bigg|
+
\end{align}$$
+

Latest revision as of 08:58, 25 June 2015

In the second solution. For proofing the bilinearity of anti-commutator it is sufficient to show linearity in the first argument. Then use that it is symmetric.

Beni (talk) 16:42, 24 June 2015 (CEST)