Difference between revisions of "MediaWiki:Sitenotice"

From Ferienserie MMP2
Jump to: navigation, search
(Created page with "=Problem= Compute $$\sum_{j=1}^\infty \frac{1}{j^4}$$ using Parseval identity. ''Hint:'' consider \(f(x) = \frac{1}{2} x^2\) =Solution Sketch= # Calculate the Fourier coeff...")
 
(Blanked the page)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=Problem=
 
Compute
 
$$\sum_{j=1}^\infty \frac{1}{j^4}$$
 
using Parseval identity.
 
  
''Hint:'' consider \(f(x) = \frac{1}{2} x^2\)
 
 
 
=Solution Sketch=
 
# Calculate the Fourier coefficients \(\hat f(x)\)
 
# Apply Parseval identity
 
# ???
 
# Profit
 
 
 
=Solution=
 
Recall the definition of the Fourier coefficients for \(2\pi\)-periodic functions in \(C^\infty(\mathbb{R})\):
 
$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) \: e^{-ikx} \: dx$$
 
 
We consider the continuous continuation of \(f(x)\) on \([-\pi, \pi]\) and calculate the Fourier coefficients:
 
 
For \(k=0\):
 
$$\hat f(0) = \frac{1}{2\pi}\int_{-\pi}^\pi \frac{x^2}{2} dx = \frac{\pi^2}{6}$$
 
 
and for \(k \neq 0\):
 
$$\begin{align}
 
\hat f(k) &= \frac{1}{2\pi} \int_{-\pi}^\pi \frac{x^2}{2} e^{-ikx}\: dx \\
 
&= \frac{1}{2\pi} \int_0^\pi x^2 \cos(kx)\: dx \\
 
&= - \frac{1}{k\pi} \int_0^\pi x \sin(kx)\: dx \\
 
&= \left[ \frac{1}{k^2\pi}x \cos(kx) \right]_0^\pi - \frac{1}{k^2\pi} \int_0^\pi \cos(kx)\: dx \\
 
&= \frac{\cos(k\pi)}{k^2} \\
 
&= \frac{(-1)^k}{k^2}
 
\end{align}$$
 
 
 
Now, remember Parseval's identity:
 
$$\sum_{k=-\infty}^\infty \left| \hat f(k) \right|^2 = \frac{1}{2\pi} \int_{-\pi}^\pi \left| f(x) \right|^2 \: dx \tag{*}$$
 
 
 
Applied to our \(f(x)\):
 
$$\frac{\pi^4}{20} = \frac{1}{2\pi} \int_{-\pi}^\pi \left| \frac{1}{2} x^2 \right|^2 \: dx \overset{(*)}{=} \sum_{k=-\infty}^\infty \left| \hat f(k) \right|^2 = \frac{\pi^4}{36} + 2 \sum_{k=1}^\infty \frac{1}{k^4}$$
 
And thus, it follows that
 
$$\sum_{k=1}^\infty \frac{1}{k^4} = \frac{\pi^4 (\frac{1}{20} - \frac{1}{36})}{2} = \frac{\pi^4}{90}$$
 

Latest revision as of 09:38, 24 July 2016