Aufgaben:Problem 9

From Ferienserie MMP2
Revision as of 14:39, 14 June 2015 by Mich (Talk | contribs) (b))

Jump to: navigation, search

Solution

a)

$$\nabla_k g_{ij} = \partial_k g_{ij} - g_{nj} \Gamma^n_{kj} - g_{in}\Gamma^n_{kj} =$$ $$ = \partial_k g_{ij} - g_{nj}(\frac{1}{2} g^{np}(\partial_k g_{ip} + \partial_i g_{kp} - \partial_p g_{ki})) - g_{in}(\frac{1}{2} g^{nq}(\partial_k g_{jq} + \partial_j g_{kq} - \partial_q g_{kj})) =$$

from the symmetry of \( g_{ij} \) and from: \( g_{ki}g^{ij} = g^{ji}g_{ik} = \delta^i_k \) we obtain:

$$ = \partial_k g_{ij} - \frac{1}{2} \delta^p_j(\partial_k g_{ip} + \partial_i g_{kp} - \partial_p g_{ki}) - \frac{1}{2} \delta^q_i(\partial_k g_{jq} + \partial_j g_{kq} - \partial_q g_{kj}) = $$

$$ = \partial_k g_{ij} - \frac{1}{2} (\partial_k g_{ij} + \partial_i g_{kj} - \partial_j g_{ki}) - \frac{1}{2} (\partial_k g_{ji} + \partial_j g_{ki} - \partial_i g_{kj}) = $$

$$ = \partial_k g_{ij} - \frac{1}{2} (\partial_k g_{ij} + \partial_k g_{ji}) - \frac{1}{2} (\partial_j g_{ki} - \partial_i g_{kj} + \partial_i g_{kj} - \partial_j g_{ki} ) = 0 $$

again we used the symmetry of \( g_{ij} \) in the first bracket.


b)

My idea is to transform \( g^{ij} \nabla_i(\partial_j f) \) into \(\Delta f \). From there we have to show \( Lg(f) = \Delta(f) \) as in notes_new at pg 82.

The first part should be:

$$ g^{ij} \nabla_i \partial_j + \underbrace{ \nabla_i g_{ij}}_\text{= 0, from a)} = g^{ij} \nabla_i \partial_j + \underbrace{( \nabla_i g_{ij}) \partial_j}_\text{= 0} = g^{ij} \nabla_i \partial_j + \underbrace{( \nabla_i g^{ij})\partial_j}_\text{= 0} = \nabla_i (g^{ij} \partial_j) = \nabla_i \partial^i = \Delta$$