Aufgaben:Problem 9

From Ferienserie MMP2
Revision as of 07:03, 14 June 2015 by Mich (Talk | contribs) (Created page with "==Solution== '''a)''' $$\nabla_k g_{ij} = \partial_k g_{ij} - g_{nj} \Gamma^n_{kj} - g_{in}\Gamma^n_{kj} =$$ $$ = \partial_k g_{ij} - g_{nj}(\frac{1}{2} g^{np}(\partial_k g_...")

Jump to: navigation, search

Solution

a)

$$\nabla_k g_{ij} = \partial_k g_{ij} - g_{nj} \Gamma^n_{kj} - g_{in}\Gamma^n_{kj} =$$ $$ = \partial_k g_{ij} - g_{nj}(\frac{1}{2} g^{np}(\partial_k g_{ip} + \partial_i g_{kp} - \partial_p g_{ki})) - g_{in}(\frac{1}{2} g^{nq}(\partial_k g_{jq} + \partial_j g_{kq} - \partial_q g_{kj})) =$$

from the symmetry of \( g_{ij} \) and from: \( g_{ki}g^{ij} = g^{ji}g_{ik} = \delta^i_k \) we obtain:

$$ = \partial_k g_{ij} - \frac{1}{2} \delta^p_j(\partial_k g_{ip} + \partial_i g_{kp} - \partial_p g_{ki}) - \frac{1}{2} \delta^q_i(\partial_k g_{jq} + \partial_j g_{kq} - \partial_q g_{kj}) = $$

$$ = \partial_k g_{ij} - \frac{1}{2} (\partial_k g_{ij} + \partial_i g_{kj} - \partial_j g_{ki}) - \frac{1}{2} (\partial_k g_{ji} + \partial_j g_{ki} - \partial_i g_{kj}) = $$

$$ = \partial_k g_{ij} - \frac{1}{2} (\partial_k g_{ij} + \partial_k g_{ji}) - \frac{1}{2} (\partial_j g_{ki} - \partial_i g_{kj} + \partial_i g_{kj} - \partial_j g_{ki} ) = 0 $$

again we used the symmetry of \( g_{ij} \) in the first bracket.