Difference between revisions of "Aufgaben:Problem 7"

From Ferienserie MMP2
Jump to: navigation, search
m
(Created page with "==SOLUTION== See [https://unapologetic.wordpress.com/2010/11/08/the-character-table-of-s4/]")
Line 1: Line 1:
=Problem=
+
==SOLUTION==
''Fourier transform of the Gauss function''
+
  
Show that
+
See [https://unapologetic.wordpress.com/2010/11/08/the-character-table-of-s4/]
$$\frac{1}{\sqrt{2\pi t}} \int_{-\infty}^\infty e^{-\frac{x^2}{2t}} e^{-ikx} dx = e^{-\frac{1}{2}tk^2} , \forall k \in \mathbb{R}$$
+
 
+
=Proof=
+
$$
+
\begin{align}
+
I \ &= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^\infty e^{-\frac{x^2}{2t}} e^{-ikx} dx \\
+
&= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^\infty e^{-\frac{1}{2t}(x^2 + 2ikt)} dx \\
+
&= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^\infty e^{-\frac{1}{2t}((x + ikt)^2 + k^2t^2)} dx \\
+
&= \frac{1}{\sqrt{2\pi t}} e^{-\frac{k^2t}{2}} \int_{-\infty}^\infty e^{-\frac{1}{2t}(x + ikt)^2} dx .
+
\end{align}
+
$$
+
 
+
Now, we substitute \(u = x + ikx\) with \(du = dx\) and find
+
$$
+
\begin{align}
+
I \ &= \frac{1}{\sqrt{2\pi t}} e^{-\frac{k^2t}{2}} \int_{-\infty}^\infty e^{-\frac{1}{2t}u^2} du\\
+
&= \frac{1}{\sqrt{2\pi t}} e^{-\frac{k^2t}{2}} \sqrt{2\pi t} \\
+
&= e^{-\frac{k^2 t}{2}} .
+
\end{align}
+
$$
+
 
+
Where we have used that
+
$$\int_{-\infty}^\infty e^{-x^2 a} dx = \sqrt{\frac{\pi}{a}}$$
+
 
+
Thus, the proof follows.
+
<p style="text-align:right;">\(\square\)</p>
+
 
+
(No, I don't know how to right align a square. Change this if you do!) --[[User:Nik|Nik]] ([[User talk:Nik|talk]]) 11:16, 18 December 2014 (CET)
+

Revision as of 11:30, 8 June 2015

SOLUTION

See [1]