Difference between revisions of "Aufgaben:Problem 5"

From Ferienserie MMP2
Jump to: navigation, search
(added solution)
Line 19: Line 19:
 
It is obvious that \( B_n(x) \) is \(2\pi\)-periodic and, by differentiating every term separately, that
 
It is obvious that \( B_n(x) \) is \(2\pi\)-periodic and, by differentiating every term separately, that
 
$$B'_n = iB_{n-1}$$
 
$$B'_n = iB_{n-1}$$
 +
 +
Also, for \(n \in 2\mathbb{Z}_{>0}\), we see that
 +
$$B_n(0) = 2 \sum_{k=1}^\infty k^{-n} \tag{$\ddagger$}$$
  
 
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
Line 83: Line 86:
 
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
  
''What's this all leading up to'', you may ask. Find the answer here in next weeks sequel.
+
As B_n is \(2\pi\)-periodic for all \(n \geq 2\), the above identity leads us to the relation
[[User:Nik|Nik]] ([[User talk:Nik|talk]]) 18:28, 25 December 2014 (CET)
+
$$0 = B_n(2\pi) - B_n(0) = \sum_{k=1}^n B_{n-k}(0) \frac{(2\pi i)^k}{k!} \tag{*}$$
 +
for all \(n \geq 2\), which determines all \(B_n(0)\) from \(B_0(0) = -1\)
 +
 
 +
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 +
 
 +
The definition of the \(B_n\) in the problem (the Bernoulli numbers, not the functions!) can be transformed to:
 +
$$\begin{align}
 +
& \frac{z}{e^z - 1} = \sum_{n=0}^\infty B_n \frac{z^n}{n!} \\
 +
\Leftrightarrow\ & z = \left( \sum_{n=0}^\infty B_n \frac{z^n}{n!} \right) \left( \sum_{k=1}^\infty \frac{z^k}{k!} \right) \\
 +
\Leftrightarrow\ & z = \left( B_0 + B_1z + \frac{B_2}{2}z^2 + \frac{B_3}{3!}z^3 + ... \right) \left( z + \frac{z^2}{2} + \frac{z^3}{3!} + \frac{z^4}{4!} + ... \right) \\
 +
\Leftrightarrow\ & z = B_0z + \left( \frac{B_0}{2!} + B_1 \right)z^2 + \left( \frac{B_0}{3!} + \frac{B_1}{2!} + \frac{B_2}{2!} \right)z^3 + \left( \frac{B_0}{4!} + \frac{B_1}{3!} + \frac{B_2}{2!2!} + \frac{B_3}{3!} \right)z^4
 +
\end{align}$$
 +
which, through equating coefficients yields \(B_0 = 1\) and for \(n \geq 2\)
 +
$$\sum_{k=1}^n \frac{B_{n-k}}{(n-k)!k!} = 0 \tag{$\dagger$}$$
 +
 
 +
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 +
 
 +
By comparing the relations for the \(B_n(0)\) (see \((*)\)) and the \(B_n\) (see \((\dagger)\)) we find
 +
$$B_n(0) = - \frac{(2\pi i)^n B_n}{n!}$$
 +
which, with equation \((\ddagger)\) proves the identity in the problem.

Revision as of 12:03, 26 December 2014

Problem

Show, by using the Fourier series, that $$\sum_{k=1}^\infty \frac{1}{k^n} = - \frac{(2 \pi i)^n}{2(n!)} B_n,\ n \in 2 \mathbb{Z}_{>0}$$ where \(B_n\) are the Bernoulli numbers defined as $$\frac{z}{e^z - 1} = \sum_{n=0}^\infty B_n \frac{z^n}{n!}$$

Hint: consider \( B_n(x) := \sum_{k \in \mathbb{Z} \setminus \{0\}} k^{-n} e^{ikx},\ n \in \mathbb{Z}_{\geq 2},\ x \in \mathbb{R} \)

Solution

As suggested in the problem, we will have a look at the convergent fourier series $$B_n(x) := \sum_{k \in \mathbb{Z} \setminus \{0\}} k^{-n} e^{ikx},\ n \in \mathbb{Z}_{\geq 2},\ x \in \mathbb{R}$$ with Fourier coefficients $$c_k = \begin{cases} 0 & \text{for } k = 0\\ \frac{1}{k^n} & \text{for } k \neq 0 \end{cases}$$


It is obvious that \( B_n(x) \) is \(2\pi\)-periodic and, by differentiating every term separately, that $$B'_n = iB_{n-1}$$

Also, for \(n \in 2\mathbb{Z}_{>0}\), we see that $$B_n(0) = 2 \sum_{k=1}^\infty k^{-n} \tag{$\ddagger$}$$


We will first show that \( B_2(x) = f(x) := \pi^2/3 - \pi x + x^2/2 \) for \( x \in [0, 2\pi]\).

Recall the definition of the Fourier coefficients for \(2\pi\)-periodic functions in \(C^\infty(\mathbb{R})\): $$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) \: e^{-ikx} \: dx$$

We can easily verify the following identities: $$\begin{align} \frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} \: dx &\ =\ \begin{cases} 1 & \text{for } k = 0\\ 0 & \text{for } k \neq 0 \end{cases} \\ \frac{1}{2\pi} \int_0^{2\pi} x \: e^{-ikx} \: dx &\ =\ \begin{cases} \pi & \text{for } k = 0\\ \frac{i}{k} & \text{for } k \neq 0 \end{cases} \\ \frac{1}{2\pi} \int_0^{2\pi} x^2 \: e^{-ikx} \: dx &\ =\ \begin{cases} \frac{4}{3} \pi^2 & \text{for } k = 0\\ \frac{2(1+ik\pi)}{k^2} & \text{for } k \neq 0 \end{cases} \end{align}$$

Calculating the Fourier coefficients for \(f(x)\) then yields $$\begin{align} \hat f(k) &= \frac{1}{2\pi} \int_0^{2\pi} f(x) \: e^{-ikx} \: dx\\ &= \frac{1}{2\pi} \left( \frac{\pi^2}{3} \int_0^{2\pi} e^{-ikx} \: dx - \pi \int_0^{2\pi} x \: e^{-ikx} \: dx + \frac{1}{2} \int_0^{2\pi} x^2 \: e^{-ikx} \right) \\ &= \begin{cases} 0 & \text{for } k = 0\\ \frac{1}{k^2} & \text{for } k \neq 0 \end{cases} \end{align}$$ which proves that \(B_2(x) = f(x)\) for \(x \in [0, 2\pi]\).

Thus, we have shown that the \(B_n|_{[0, 2\pi]}\) are polynomials, which are recursively defined by \(B'_n = iB_{n-1}\) and \(\int_0^{2\pi} B_n(x) dx = -i(B_{n+1}(2\pi) - B_{n+1}(0)) = 0\). We also add $$B_1(x) = -iB'_2(x) = i\pi - ix \qquad B_0(x) = -iB'_1(x) = -1$$


By induction over \(n\), we will now prove that $$B_n(x) = \sum_{k=0}^n B_{n-k}(0) \frac{(ix)^k}{k!}$$ Base case for \(n=0\): $$B_0(0) \frac{(ix)^0}{0!} = B_0(0) = -1 = B_0(x)$$ Inductive step (\(n\!-\!1 \rightarrow n\)): $$\begin{align} B_n(x) &= \int_0^x iB_{n-1}(\tilde x)\ d\tilde x + B_n(0) \\ &= \int_0^x i\left(\sum_{k=0}^{n-1} B_{(n-1)-k}(0) \frac{(i\tilde x)^k}{k!} \right) d\tilde x + B_n(0) \\ &= \left( \sum_{k=0}^{n-1} B_{(n-1)-k}(0) \frac{i^{k+1}}{k!} \int_0^x \tilde x^k\ d\tilde x \right) + B_n(0) \\ &= \left( \sum_{k=0}^{n-1} B_{(n-1)-k}(0) \frac{i^{k+1}}{k!} \frac{x^{k+1}}{k+1} \right) + B_n(0) \\ &= \left( \sum_{k=0}^{n-1} B_{n-(k+1)}(0) \frac{(ix)^{k+1}}{(k+1)!} \right) + B_n(0) \\ &= \left( \sum_{k=1}^n B_{n-k}(0) \frac{(ix)^k}{k!} \right) + B_n(0) \\ &= \sum_{k=0}^n B_{n-k}(0) \frac{(ix)^k}{k!} \end{align}$$


As B_n is \(2\pi\)-periodic for all \(n \geq 2\), the above identity leads us to the relation $$0 = B_n(2\pi) - B_n(0) = \sum_{k=1}^n B_{n-k}(0) \frac{(2\pi i)^k}{k!} \tag{*}$$ for all \(n \geq 2\), which determines all \(B_n(0)\) from \(B_0(0) = -1\)


The definition of the \(B_n\) in the problem (the Bernoulli numbers, not the functions!) can be transformed to: $$\begin{align} & \frac{z}{e^z - 1} = \sum_{n=0}^\infty B_n \frac{z^n}{n!} \\ \Leftrightarrow\ & z = \left( \sum_{n=0}^\infty B_n \frac{z^n}{n!} \right) \left( \sum_{k=1}^\infty \frac{z^k}{k!} \right) \\ \Leftrightarrow\ & z = \left( B_0 + B_1z + \frac{B_2}{2}z^2 + \frac{B_3}{3!}z^3 + ... \right) \left( z + \frac{z^2}{2} + \frac{z^3}{3!} + \frac{z^4}{4!} + ... \right) \\ \Leftrightarrow\ & z = B_0z + \left( \frac{B_0}{2!} + B_1 \right)z^2 + \left( \frac{B_0}{3!} + \frac{B_1}{2!} + \frac{B_2}{2!} \right)z^3 + \left( \frac{B_0}{4!} + \frac{B_1}{3!} + \frac{B_2}{2!2!} + \frac{B_3}{3!} \right)z^4 \end{align}$$ which, through equating coefficients yields \(B_0 = 1\) and for \(n \geq 2\) $$\sum_{k=1}^n \frac{B_{n-k}}{(n-k)!k!} = 0 \tag{$\dagger$}$$


By comparing the relations for the \(B_n(0)\) (see \((*)\)) and the \(B_n\) (see \((\dagger)\)) we find $$B_n(0) = - \frac{(2\pi i)^n B_n}{n!}$$ which, with equation \((\ddagger)\) proves the identity in the problem.