Difference between revisions of "Aufgaben:Problem 3"

From Ferienserie MMP2
Jump to: navigation, search
(Solution)
m (Typesetting: Made "Sym" upright)
Line 2: Line 2:
 
Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).
 
Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).
  
a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow SymG\) where \(SymG\) denotes the set of
+
a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow \mathrm{Sym}G\) where \(\mathrm{Sym}G\) denotes the set of
 
all invertible maps from \(G\) to \(G\).  
 
all invertible maps from \(G\) to \(G\).  
  
 
b) Prove that the map \(L\) is injective.  
 
b) Prove that the map \(L\) is injective.  
  
c) Prove that composing maps in \(SymG\) defines a group structure on \(SymG\).  
+
c) Prove that composing maps in \(\mathrm{Sym}G\) defines a group structure on \(\mathrm{Sym}G\).  
  
 
d) Prove that the map \(L\) is a homomorphism of groups.
 
d) Prove that the map \(L\) is a homomorphism of groups.
  
e) Conclude that every finite group \(G\) can be considered a subgroup of \(SymG\).
+
e) Conclude that every finite group \(G\) can be considered a subgroup of \(\mathrm{Sym}G\).
  
 
==Solution==
 
==Solution==
Line 28: Line 28:
 
c) <span style="color: red">Please consider the discussion page!"</span>
 
c) <span style="color: red">Please consider the discussion page!"</span>
  
# \(\forall R, S\in SymG\): \((R \circ S) \in SymG\). Proof:
+
# \(\forall R, S\in \mathrm{Sym}G\): \((R \circ S) \in \mathrm{Sym}G\). Proof:
 
## \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
 
## \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
## \((S^{-1} \circ R^{-1}) \in SymG\) is the inverse element of \((R \circ S) \), because  
+
## \((S^{-1} \circ R^{-1}) \in \mathrm{Sym}G\) is the inverse element of \((R \circ S) \), because  
 
##: $$\forall g \in G: ((S^{-1} \circ R^{-1}) \circ (R \circ S))(g)=(S^{-1} \circ R^{-1} \circ R \circ S)(g)=(S^{-1} \circ S)(g)=Id(g)$$
 
##: $$\forall g \in G: ((S^{-1} \circ R^{-1}) \circ (R \circ S))(g)=(S^{-1} \circ R^{-1} \circ R \circ S)(g)=(S^{-1} \circ S)(g)=Id(g)$$
 
##: $$\forall g \in G: ((R \circ S) \circ (S^{-1} \circ R^{-1}))(g)=(R \circ S \circ S^{-1} \circ R^{-1})(g)=(R \circ R^{-1})(g)=Id(g)$$
 
##: $$\forall g \in G: ((R \circ S) \circ (S^{-1} \circ R^{-1}))(g)=(R \circ S \circ S^{-1} \circ R^{-1})(g)=(R \circ R^{-1})(g)=Id(g)$$
# existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in SymG\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)  
+
# existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in \mathrm{Sym}G\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)  
 
# existance of inverse element: by definition
 
# existance of inverse element: by definition
# associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in SymG\):
+
# associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in \mathrm{Sym}G\):
 
#: $$((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))$$  
 
#: $$((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))$$  
 
#: $$(R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))$$
 
#: $$(R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))$$
Line 43: Line 43:
 
# \(\{L_g: g \in G\}\) is a group under composition. Proof:  
 
# \(\{L_g: g \in G\}\) is a group under composition. Proof:  
 
#* \(\{L_g: g \in G\}\neq\{\}\) as \(G\neq\{\}\)
 
#* \(\{L_g: g \in G\}\neq\{\}\) as \(G\neq\{\}\)
#* \(\{L_g: g \in G\}\subset SymG\) and \(L_g^{-1} \in \{L_g: g \in G\}\) as shown in a)
+
#* \(\{L_g: g \in G\}\subset \mathrm{Sym}G\) and \(L_g^{-1} \in \{L_g: g \in G\}\) as shown in a)
 
#* \(\forall L_g, L_h \in \{L_g: g \in G\}: (L_g \circ L_h) \in \{L_g: g \in G\}\) Proof: from 1.) \(\Rightarrow \forall g,h \in G: L_g \circ L_h = L_{g*h}  = L_{t}\) , with \(t=g*h \in G \)
 
#* \(\forall L_g, L_h \in \{L_g: g \in G\}: (L_g \circ L_h) \in \{L_g: g \in G\}\) Proof: from 1.) \(\Rightarrow \forall g,h \in G: L_g \circ L_h = L_{g*h}  = L_{t}\) , with \(t=g*h \in G \)
#: \(\Rightarrow (\{L_g: g \in G\},\circ)\) is a subgroup of \((SymG ,\circ)\)
+
#: \(\Rightarrow (\{L_g: g \in G\},\circ)\) is a subgroup of \((\mathrm{Sym}G ,\circ)\)
  
e) The map \(L\) is defined for any finite group. As \(L\) is injective and homomorphous, \(L: G \rightarrow \{L_g: g \in G\} \subset SymG\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(\{L_g: g \in G\}\)
+
e) The map \(L\) is defined for any finite group. As \(L\) is injective and homomorphous, \(L: G \rightarrow \{L_g: g \in G\} \subset \mathrm{Sym}G\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(\{L_g: g \in G\}\)

Revision as of 12:34, 26 July 2015

Problem

Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).

a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow \mathrm{Sym}G\) where \(\mathrm{Sym}G\) denotes the set of all invertible maps from \(G\) to \(G\).

b) Prove that the map \(L\) is injective.

c) Prove that composing maps in \(\mathrm{Sym}G\) defines a group structure on \(\mathrm{Sym}G\).

d) Prove that the map \(L\) is a homomorphism of groups.

e) Conclude that every finite group \(G\) can be considered a subgroup of \(\mathrm{Sym}G\).

Solution

Brynerm (talk) 15:44, 8 June 2015 (CEST)


a) define \(L_g^{-1} := L_{g^{-1}}\). Now

$$\forall h \in G: L_g^{-1} \circ L_g(h)=L_{g^{-1}}(g*h)=g^{-1}gh=h \;\Rightarrow L_{g^{-1}} \circ L_g=Id$$ $$\forall h \in G: L_g \circ L_g^{-1}(h)=L_g(g^{-1}*h)=gg^{-1}h=h \;\Rightarrow L_g \circ L_{g^{-1}}=Id$$

That holds that all \(L_g\) are invertible.

b) Assume \(L(g)=L(h) \Rightarrow L_g(t)=L_h(t), \forall t \in G\;\Rightarrow gt=ht, \forall t \;\Rightarrow g=h\) (as \(t\in G\) is invertible)

c) Please consider the discussion page!"

  1. \(\forall R, S\in \mathrm{Sym}G\): \((R \circ S) \in \mathrm{Sym}G\). Proof:
    1. \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
    2. \((S^{-1} \circ R^{-1}) \in \mathrm{Sym}G\) is the inverse element of \((R \circ S) \), because
      $$\forall g \in G: ((S^{-1} \circ R^{-1}) \circ (R \circ S))(g)=(S^{-1} \circ R^{-1} \circ R \circ S)(g)=(S^{-1} \circ S)(g)=Id(g)$$
      $$\forall g \in G: ((R \circ S) \circ (S^{-1} \circ R^{-1}))(g)=(R \circ S \circ S^{-1} \circ R^{-1})(g)=(R \circ R^{-1})(g)=Id(g)$$
  2. existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in \mathrm{Sym}G\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)
  3. existance of inverse element: by definition
  4. associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in \mathrm{Sym}G\):
    $$((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))$$
    $$(R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))$$

d)

  1. \(L\) is homomorphous. Proof: \( \forall g,h \in G: L_{g*h}(t)=g*h*t=g*L_h(t)=L_g \circ L_h (t)\)
  2. \(\{L_g: g \in G\}\) is a group under composition. Proof:
    • \(\{L_g: g \in G\}\neq\{\}\) as \(G\neq\{\}\)
    • \(\{L_g: g \in G\}\subset \mathrm{Sym}G\) and \(L_g^{-1} \in \{L_g: g \in G\}\) as shown in a)
    • \(\forall L_g, L_h \in \{L_g: g \in G\}: (L_g \circ L_h) \in \{L_g: g \in G\}\) Proof: from 1.) \(\Rightarrow \forall g,h \in G: L_g \circ L_h = L_{g*h} = L_{t}\) , with \(t=g*h \in G \)
    \(\Rightarrow (\{L_g: g \in G\},\circ)\) is a subgroup of \((\mathrm{Sym}G ,\circ)\)

e) The map \(L\) is defined for any finite group. As \(L\) is injective and homomorphous, \(L: G \rightarrow \{L_g: g \in G\} \subset \mathrm{Sym}G\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(\{L_g: g \in G\}\)