Difference between revisions of "Aufgaben:Problem 3"

From Ferienserie MMP2
Jump to: navigation, search
Line 31: Line 31:
 
# associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in SymG\):
 
# associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in SymG\):
  
::\((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))\)  
+
::\(((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))\)  
  
::\(R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))\)
+
::\((R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))\)
  
 
d)  
 
d)  

Revision as of 06:00, 9 June 2015

Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).

a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow SymG\) where \(SymG\) denotes the set of all invertible maps from \(G\) to \(G\).

b) Prove that the map \(L\) is injective.

c) Prove that composing maps in \(SymG\) defines a group structure on \(SymG\).

d) Prove that the map \(L\) is a homomorphism of groups.

e) Conclude that every finite group \(G\) can be considered a subgroup of \(SymG\).


--Brynerm (talk) 15:44, 8 June 2015 (CEST)

a) define \(L_g^{-1} := L_{g^{-1}}\). Now \( \forall h: L_g^{-1} \circ L_g(h)=L_{g^{-1}}(g*h)=g^{-1}gh=h \;\Rightarrow L_{g^{-1}} \circ L_g=Id \) That holds that all \(L_g\) are invertible

b) Assume \(L(g)=L(h) \Rightarrow L_g(t)=L_h(t), \forall t \;\Rightarrow gt=ht, \forall t \;\Rightarrow g=h\) (as \(t\in G\) is invertible)

c)

  1. \(\forall R, S\in SymG\): \((R \circ S) \in SymG\) Proof:
    1. \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
    2. \((S^{-1} \circ R^{-1}) \in SymG\) is the inverse element of \((R \circ S) \), because \( \forall g \in G: S^{-1}(R^{-1}(R(S(g))))=S^{-1}(S(g))=g \)
  2. existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in SymG\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)
  3. existance of inverse element: by definition
  4. associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in SymG\):
\(((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))\)
\((R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))\)

d)

  1. \(L\) is homomophous. Proof: \(L_{g*h}(t)=g*h*t=g*L_h(t)=L_g \circ L_h (t)\)
  2. \(\{L_g: g \in G\}\) is a group under composition. Proof: \(\{L_g: g \in G\} \subset SymG\) as shown above and from 1.) fallows \(L_g \circ L_h = L_{g*h} = L_{t}\) , with \(t=g*h \in G \Rightarrow (L_g \circ L_h) \in \{L_g: g \in G\} \Rightarrow (\{L_g: g \in G\} ,\circ)\) is a subgroup of \((SymG ,\circ)\)

e) The map \(L\) is defined for any finite group. As \(L\) is injective and homomorphous, \(L: G \rightarrow L(G) \subset SymG\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(L(G)=\{L_g: g \in G\}\)