Difference between revisions of "Aufgaben:Problem 3"

From Ferienserie MMP2
Jump to: navigation, search
m (put the neutral element before the inverse element)
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
==Problem==
 
Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).
 
Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).
  
a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow SymG\) where \(SymG\) denotes the set of
+
a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow \mathrm{Sym}G\) where \(\mathrm{Sym}G\) denotes the set of
 
all invertible maps from \(G\) to \(G\).  
 
all invertible maps from \(G\) to \(G\).  
  
 
b) Prove that the map \(L\) is injective.  
 
b) Prove that the map \(L\) is injective.  
  
c) Prove that composing maps in \(SymG\) defines a group structure on \(SymG\).  
+
c) Prove that composing maps in \(\mathrm{Sym}G\) defines a group structure on \(\mathrm{Sym}G\).  
  
 
d) Prove that the map \(L\) is a homomorphism of groups.
 
d) Prove that the map \(L\) is a homomorphism of groups.
  
e) Conclude that every finite group \(G\) can be considered a subgroup of \(SymG\).
+
e) Conclude that every finite group \(G\) can be considered a subgroup of \(\mathrm{Sym}G\).
  
 +
==Solution==
 +
[[User:Brynerm|Brynerm]] ([[User talk:Brynerm|talk]]) 15:44, 8 June 2015 (CEST)
 
----
 
----
--[[User:Brynerm|Brynerm]] ([[User talk:Brynerm|talk]]) 15:44, 8 June 2015 (CEST)
 
  
 
a) define \(L_g^{-1} := L_{g^{-1}}\). Now
 
a) define \(L_g^{-1} := L_{g^{-1}}\). Now
\(
 
\forall h: L_g^{-1} \circ L_g(h)=L_{g^{-1}}(g*h)=g^{-1}gh=h \;\Rightarrow L_{g^{-1}} \circ L_g=Id
 
\)
 
That holds that all \(L_g\) are invertible
 
  
b) Assume \(L(g)=L(h) \Rightarrow L_g(t)=L_h(t), \forall t \;\Rightarrow gt=ht, \forall t \;\Rightarrow g=h\) (as \(t\in G\) is invertible)
+
$$\forall h \in G: L_g^{-1} \circ L_g(h)=L_{g^{-1}}(g*h)=g^{-1}gh=h \;\Rightarrow L_{g^{-1}} \circ L_g=Id$$
 +
$$\forall h \in G: L_g \circ L_g^{-1}(h)=L_g(g^{-1}*h)=gg^{-1}h=h \;\Rightarrow L_g \circ L_{g^{-1}}=Id$$
  
c)  
+
That holds that all \(L_g\) are invertible.
# \(\forall R, S\in SymG\): \((R \circ S) \in SymG\) Proof:
+
 
## \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
+
b) Assume \(L(g)=L(h) \Rightarrow L_g(t)=L_h(t), \forall t \in G\;\Rightarrow gt=ht, \forall t \;\Rightarrow g=h\) (as \(t\in G\) is invertible)
## \((S^{-1} \circ R^{-1}) \in SymG\) is the inverse element of \((R \circ S) \), because \( \forall g \in G: S^{-1}(R^{-1}(R(S(g))))=S^{-1}(S(g))=g \)
+
 
# existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in SymG\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)  
+
c) <span style="color: red">The numbers don't accord any more with the ones in the discussion!</span>
# existance of inverse element: by definition
+
 
# associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in SymG\):
+
let \(R,S,T\) be arbitrary elements of \(SymG\)
 +
 
 +
# \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
 +
# associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in \mathrm{Sym}G\):
 +
#: $$((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))$$
 +
#: $$(R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))$$
 +
# existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in \mathrm{Sym}G\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)  
 +
# existance of inverse element: by definition as the identity map is the neutral element of \(SymG\)
 +
# closure: \(\forall R, S\in \mathrm{Sym}G\): \((R \circ S) \in \mathrm{Sym}G\). Proof:
 +
#: \((S^{-1} \circ R^{-1}) \in \mathrm{Sym}G\) is the inverse element of \((R \circ S) \), because
 +
#: $$\forall g \in G: ((S^{-1} \circ R^{-1}) \circ (R \circ S))(g)=(S^{-1} \circ R^{-1} \circ R \circ S)(g)=(S^{-1} \circ S)(g)=Id(g)$$
 +
#: $$\forall g \in G: ((R \circ S) \circ (S^{-1} \circ R^{-1}))(g)=(R \circ S \circ S^{-1} \circ R^{-1})(g)=(R \circ R^{-1})(g)=Id(g)$$
  
::\(((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))\)
 
  
::\((R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))\)
 
  
 
d)  
 
d)  
# \(L\) is homomophous. Proof: \(L_{g*h}(t)=g*h*t=g*L_h(t)=L_g \circ L_h (t)\)
+
# \(L\) is homomorphous. Proof: \( \forall g,h \in G: L_{g*h}(t)=g*h*t=g*L_h(t)=L_g \circ L_h (t)\)
# \(\{L_g: g \in G\}\) is a group under composition. Proof: \(\{L_g: g \in G\} \subset SymG\) as shown above and from 1.) fallows \(L_g \circ L_h = L_{g*h}  = L_{t}\) , with \(t=g*h \in G \Rightarrow (L_g \circ L_h) \in \{L_g: g \in G\} \Rightarrow (\{L_g: g \in G\} ,\circ)\) is a subgroup of \((SymG ,\circ)\)
+
# from c) we know that \(symG\) has group structure, therefore  \(L\) is homomorphism of groups
 +
 
 +
 
 +
e)
 +
 
 +
The map \(L\) is defined for any finite group.
 +
 
 +
\(\{L_g: g \in G\}\) is a group under composition. Proof:  
 +
* \(\{L_g: g \in G\}\neq\{\}\) as \(G\neq\{\}\)
 +
* \(\{L_g: g \in G\}\subset \mathrm{Sym}G\) and \(L_g^{-1} \in \{L_g: g \in G\}\) as shown in a)
 +
* \(\forall L_g, L_h \in \{L_g: g \in G\}: (L_g \circ L_h) \in \{L_g: g \in G\}\) Proof: from 1.) \(\Rightarrow \forall g,h \in G: L_g \circ L_h = L_{g*h}  = L_{t}\) , with \(t=g*h \in G \)
 +
: \(\Rightarrow (\{L_g: g \in G\},\circ)\) is a subgroup of \((\mathrm{Sym}G ,\circ)\)
  
e) The map \(L\) is defined for any finite group. As \(L\) is injective and homomorphous, \(L: G \rightarrow L(G) \subset SymG\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(L(G)=\{L_g: g \in G\}\)
+
\(L\) is injective and homomorphous and if we restrict \(L\) to its image it becomes also surjective. So \(L^*: G \rightarrow L(G)=\{L_g: g \in G\} \subset \mathrm{Sym}G\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(\{L_g: g \in G\}\)

Latest revision as of 08:29, 5 August 2015

Problem

Let \(G\) be a finite group. For a given \(g \in G\) we consider the map \(L_g : G \rightarrow G, g' \mapsto gg'\).

a) Prove that \(L : g \mapsto L_g\) defines a map \(G \rightarrow \mathrm{Sym}G\) where \(\mathrm{Sym}G\) denotes the set of all invertible maps from \(G\) to \(G\).

b) Prove that the map \(L\) is injective.

c) Prove that composing maps in \(\mathrm{Sym}G\) defines a group structure on \(\mathrm{Sym}G\).

d) Prove that the map \(L\) is a homomorphism of groups.

e) Conclude that every finite group \(G\) can be considered a subgroup of \(\mathrm{Sym}G\).

Solution

Brynerm (talk) 15:44, 8 June 2015 (CEST)


a) define \(L_g^{-1} := L_{g^{-1}}\). Now

$$\forall h \in G: L_g^{-1} \circ L_g(h)=L_{g^{-1}}(g*h)=g^{-1}gh=h \;\Rightarrow L_{g^{-1}} \circ L_g=Id$$ $$\forall h \in G: L_g \circ L_g^{-1}(h)=L_g(g^{-1}*h)=gg^{-1}h=h \;\Rightarrow L_g \circ L_{g^{-1}}=Id$$

That holds that all \(L_g\) are invertible.

b) Assume \(L(g)=L(h) \Rightarrow L_g(t)=L_h(t), \forall t \in G\;\Rightarrow gt=ht, \forall t \;\Rightarrow g=h\) (as \(t\in G\) is invertible)

c) The numbers don't accord any more with the ones in the discussion!

let \(R,S,T\) be arbitrary elements of \(SymG\)

  1. \(\forall g \in G, h:=S(g) \in G \;\Rightarrow R \circ S(g) = R(h) \in G \Rightarrow (R \circ S): G \rightarrow G\) is well defined
  2. associativity: (The composition of functions is gerenerally associative) \(\forall g \in G\) and \(\forall R, S, T \in \mathrm{Sym}G\):
    $$((R \circ S) \circ T) (g) = (R \circ S) (T(g)) = R(S(T(g)))$$
    $$(R \circ (S \circ T)) (g) = R ((S \circ T)(g)) = R(S(T(g)))$$
  3. existance of neutral element: Let \(Id\) be the identity map from \(G\) to \(G\). \(\forall g \in G\) and \(\forall R \in \mathrm{Sym}G\): \(h:=R(g), Id \circ R(g) = Id(h) = h = R (g) = R \circ Id(g)\)
  4. existance of inverse element: by definition as the identity map is the neutral element of \(SymG\)
  5. closure: \(\forall R, S\in \mathrm{Sym}G\): \((R \circ S) \in \mathrm{Sym}G\). Proof:
    \((S^{-1} \circ R^{-1}) \in \mathrm{Sym}G\) is the inverse element of \((R \circ S) \), because
    $$\forall g \in G: ((S^{-1} \circ R^{-1}) \circ (R \circ S))(g)=(S^{-1} \circ R^{-1} \circ R \circ S)(g)=(S^{-1} \circ S)(g)=Id(g)$$
    $$\forall g \in G: ((R \circ S) \circ (S^{-1} \circ R^{-1}))(g)=(R \circ S \circ S^{-1} \circ R^{-1})(g)=(R \circ R^{-1})(g)=Id(g)$$


d)

  1. \(L\) is homomorphous. Proof: \( \forall g,h \in G: L_{g*h}(t)=g*h*t=g*L_h(t)=L_g \circ L_h (t)\)
  2. from c) we know that \(symG\) has group structure, therefore \(L\) is homomorphism of groups


e)

The map \(L\) is defined for any finite group.

\(\{L_g: g \in G\}\) is a group under composition. Proof:

  • \(\{L_g: g \in G\}\neq\{\}\) as \(G\neq\{\}\)
  • \(\{L_g: g \in G\}\subset \mathrm{Sym}G\) and \(L_g^{-1} \in \{L_g: g \in G\}\) as shown in a)
  • \(\forall L_g, L_h \in \{L_g: g \in G\}: (L_g \circ L_h) \in \{L_g: g \in G\}\) Proof: from 1.) \(\Rightarrow \forall g,h \in G: L_g \circ L_h = L_{g*h} = L_{t}\) , with \(t=g*h \in G \)
\(\Rightarrow (\{L_g: g \in G\},\circ)\) is a subgroup of \((\mathrm{Sym}G ,\circ)\)

\(L\) is injective and homomorphous and if we restrict \(L\) to its image it becomes also surjective. So \(L^*: G \rightarrow L(G)=\{L_g: g \in G\} \subset \mathrm{Sym}G\) is a group isomorphism. Therefore every group \(G\) is isomorphic to \(\{L_g: g \in G\}\)