Aufgaben:Problem 15

From Ferienserie MMP2
Revision as of 17:21, 9 June 2015 by Yzemp (Talk | contribs)

Jump to: navigation, search

Let \( f \) be a continuous real-valued function on \( \mathbb{R}^n \). Let \(B = B_1(0) \) denote the unit ball in \( \mathbb{R}^3 \) . We define

$$ 1_B= \begin{cases} 1 \space x \in B \\ 0\space x\notin B \end{cases} $$

and a linear map

\begin{split} f \cdot \mu_{\partial B} : \mathcal D (\mathbb{R}^3) &\rightarrow \mathbb{R}^3 \\ \phi &\mapsto (f \cdot \mu_{\partial B})(\phi) = \int_{\partial B} f(x') \phi(x') dx' \end{split}

where \( dx' \) is the surface volume element on \( \partial B \). In particular, \(1 \cdot \mu_{\partial B} =: \mu_{\partial B} \)


a) Show that \(\forall \phi \in \mathcal D (\mathbb{R}^3) \)

\begin{split} |\langle 1_B,\phi \rangle| &\le |B| {||\phi||}_{L^\infty(\mathbb{R}^3)} \\ |\langle f \cdot 1_B,\phi \rangle| &\le |B| {||f||}_{L^\infty(B)}{||\phi||}_{L^\infty(\mathbb{R}^3)} \\ |\mu_{\partial B},\phi| &\le |\partial B| {||\phi||}_{L^\infty(\mathbb{R}^3)} \\ |( f \cdot \mu_{\partial B},\phi )| &\le |\partial B| {||f||}_{L^\infty(B)}{||\phi||}_{L^\infty(\mathbb{R}^3)} \end{split}


b) Prove that \(1_B, f \cdot 1_B, \mu_{\partial B}\) and \( f \cdot \mu_{\partial B}\) are distributions on \( \mathbb{R}^3 \).


Solution of part a)