Aufgaben:Problem 15

From Ferienserie MMP2
Revision as of 08:54, 23 December 2014 by Smonti (Talk | contribs) (Created page with "== Problem 6 == Recall, \(\vartheta\) is a ''theta function relative to a lattice'' \(\Gamma_{\omega}=\mathbb{Z}+\mathbb{Z}\omega\), \(\omega\in\mathbb{H}\), if \(\vartheta\)...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Problem 6

Recall, \(\vartheta\) is a theta function relative to a lattice \(\Gamma_{\omega}=\mathbb{Z}+\mathbb{Z}\omega\), \(\omega\in\mathbb{H}\), if \(\vartheta\) is entire and \(\forall\gamma\in\Gamma_{\omega}\ \exists a_{\gamma},b_{\gamma}\in\mathbb{C}\) such that \(\vartheta\left(z+\gamma\right)=e^{a_{\gamma}z+b_{\gamma}}\vartheta(z),\ \forall z\in\mathbb{C}\). Consider the following theta function relative to \(\Gamma_{\omega}\) (you may assume that the product converges and that \(\sigma\) satisfies the above definition): $$\sigma(z)=z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\left(1-\frac{z}{\gamma}\right )e^{\frac{z}{\gamma}+\frac{z^{2}}{2\gamma^{2}}}$$

a) Show that \(\forall a\notin\Gamma_{\omega}\), $$\wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^{2}\sigma(a)^{2}}$$ where \(\wp=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2}+c_1\) is the Weiertrass \(\wp\)-function, and \(\theta(z)=\sum_{n=-\infty}^{\infty}e^{2\pi inz}e^{\pi i\omega z^2}\) is the Riemann theta function and \(c_1\) is the coefficient in the expansion \(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})=\frac{1}{z}+c_0+c_1z+\cdots\)

Hint: show that both sides of the equality are elliptic funtions with the same poles and zeros.

b) Show that $$\wp'(a)=-\frac{\sigma(2a}{\sigma(a)^4},\ \forall a\notin\Gamma_{\omega}$$


Solutions

Coming soon, ab 27-28 erste Skizze.