Difference between revisions of "Aufgaben:Problem 15"

From Ferienserie MMP2
Jump to: navigation, search
(Created page with "Let \(f) be a continuous real-valued function on \mathbb{R}^n. Let \(B = B_1(0)) denote the unit ball in \mathbb{R}^3 . We define")
Line 1: Line 1:
Let \(f) be a continuous real-valued function on \mathbb{R}^n. Let \(B = B_1(0)) denote the unit ball in \mathbb{R}^3 . We define
+
Let \( f \) be a continuous real-valued function on \( \mathbb{R}^n \). Let \(B = B_1(0) \) denote the unit ball in \( \mathbb{R}^3 \) . We define
 +
 
 +
$$ 1_B= \begin{cases} 1 \space x \in B \\ 0\space  x\notin B  \end{cases} $$
 +
 
 +
and a linear map
 +
 
 +
$$ f \cdot \mu_{\partial B} : \mathcal D (\mathbb{R}^3) \rightarrow \mathbb{R}^3 $$
 +
$$ \phi \mapsto (f \cdot \mu_{\partial B})(\phi) = \int_{\partial B} $$

Revision as of 16:24, 9 June 2015

Let \( f \) be a continuous real-valued function on \( \mathbb{R}^n \). Let \(B = B_1(0) \) denote the unit ball in \( \mathbb{R}^3 \) . We define

$$ 1_B= \begin{cases} 1 \space x \in B \\ 0\space x\notin B \end{cases} $$

and a linear map

$$ f \cdot \mu_{\partial B} : \mathcal D (\mathbb{R}^3) \rightarrow \mathbb{R}^3 $$ $$ \phi \mapsto (f \cdot \mu_{\partial B})(\phi) = \int_{\partial B} $$