Difference between revisions of "Aufgaben:Problem 15"

From Ferienserie MMP2
Jump to: navigation, search
(Solution b))
Line 16: Line 16:
 
''Proof'':  
 
''Proof'':  
  
''i)'': $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}\frac{\theta '(z+\frac{1+\omega}{2})}{\theta(z+\frac{1+\omega}{2})}+const=$$ $$-\frac{\theta" (z+\frac{1+\omega}{2})\theta(z+\frac{1+\omega}{2})-(\theta '(z+\frac{1+\omega}{2}))^2}{\theta(z+\frac{1+\omega}{2})^2}+const$$
+
# $$\begin{align}\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}\frac{\theta '(z+\frac{1+\omega}{2})}{\theta(z+\frac{1+\omega}{2})}+const=$$ $$-\frac{\theta" (z+\frac{1+\omega}{2})\theta(z+\frac{1+\omega}{2})-(\theta '(z+\frac{1+\omega}{2}))^2}{\theta(z+\frac{1+\omega}{2})^2}+const\end{align}$$
 +
#\(\theta\) holomorphic \(\theta',\theta"\) holomorphic too, and then the uinique poles of \(\wp(z)-\wp(a)\equiv\) the zeros of \(\theta(z+\frac{1+\omega}{2})\)
 +
#'Proposition on lecture notes (p. 37 Fourier-Heat-ecc): \(\theta(\gamma+\frac{1+\omega}{2})=0\forall\gamma\in\Gamma_\omega\)
 +
#$$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}(\frac{1}{z}+c_0+c_1z+\cdots)+c_1+const=$$ $$-(-\frac{1}{z^2}+2c_1+\cdots)+const$$ \(\Rightarrow z=0\) poles of second order.
 +
#\(\wp(z)-\wp(a)\) elliptic on \(\Gamma_\omega\Rightarrow\) every \(\gamma\in\Gamma_\omega\)  is a pole of order 2.
 +
#NB: thanks to ellipticity (double periodicity) we can "move" the parallelogram such that there are no poles / zeros on the boundary. Consider a new parallelogram \(P\) with \(z=0\) inside it. From complex analysis: Prop 1.6: \(f\ elliptic\Rightarrow \int_{\partial P} fdz=0\) and argument principle: \(\int_{\partial P} \frac{f'}{f}dz=2\pi i[N_0-N_\infty]\). Where \(N_0,N_\infty\) are the number of zeros respectively poles with multiplicity counted. If \(f\ elliptic\Rightarrow \frac{f'}{f}\) is elliptic and then, from prop 1.6 \(\int_{\partial P} \frac{f'}{f}=0\Rightarrow N_0=N_\infty\). From 4. we have \(N_\infty=2\Rightarrow N_0=2\)
 +
#\(\wp(z)-\wp(a)=0\iff\wp(z)=\wp(a)\overset{\wp\  is\ even}{=}\wp(-a)\Rightarrow\ z=\pm a\) are zeros of \(\wp(z)-\wp(a)\). From ''vi)'' we know that they are the only zeros in \(P\) (W.l.o.g \(a\in P\) as we can move the parallelogram).
 +
#Ellipticity \(\Rightarrow z\) zero \(\iff z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\)
 +
<p style="text-align:right;">\(\square\)</p>
  
''ii)'': \(\theta\) holomorphic \(\theta',\theta"\) holomorphic too, and then the uinique poles of \(\wp(z)-\wp(a)\equiv\) the zeros of \(\theta(z+\frac{1+\omega}{2})\)
+
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 
+
''iii)'': Proposition on lecture notes (p. 37 Fourier-Heat-ecc): \(\theta(\gamma+\frac{1+\omega}{2})=0\forall\gamma\in\Gamma_\omega\)
+
 
+
''iv)'': $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}(\frac{1}{z}+c_0+c_1z+\cdots)+c_1+const=$$ $$-(-\frac{1}{z^2}+2c_1+\cdots)+const$$ \(\Rightarrow z=0\) poles of second order.
+
 
+
''v)'': \(\wp(z)-\wp(a)\) elliptic on \(\Gamma_\omega\Rightarrow\) every \(\gamma\in\Gamma_\omega\)  is a pole of order 2.
+
 
+
''vi)'': NB: thanks to ellipticity (double periodicity) we can "move" the parallelogram such that there are no poles / zeros on the boundary. Consider a new parallelogram \(P\) with \(z=0\) inside it. From complex analysis: Prop 1.6: \(f\ elliptic\Rightarrow \int_{\partial P} fdz=0\) and argument principle: \(\int_{\partial P} \frac{f'}{f}dz=2\pi i[N_0-N_\infty]\). Where \(N_0,N_\infty\) are the number of zeros respectively poles with multiplicity counted. If \(f\ elliptic\Rightarrow \frac{f'}{f}\) is elliptic and then, from prop 1.6 \(\int_{\partial P} \frac{f'}{f}=0\Rightarrow N_0=N_\infty\). From ''iv)'' we have \(N_\infty=2\Rightarrow N_0=2\)
+
 
+
''vii)'': \(\wp(z)-\wp(a)=0\iff\wp(z)=\wp(a)\overset{\wp\  is\ even}{=}\wp(-a)\Rightarrow\ z=\pm a\) are zeros of \(\wp(z)-\wp(a)\). From ''vi)'' we know that they are the only zeros in \(P\) (W.l.o.g \(a\in P\) as we can move the parallelogram).
+
 
+
''viii)'': Ellipticity \(\Rightarrow z\) zero \(\iff z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\square\)
+
  
 
'''Claim''': \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is elliptic and has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)
 
'''Claim''': \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is elliptic and has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)
Line 36: Line 32:
 
''Proof'':  
 
''Proof'':  
  
''i) Periodic in two directions'': Let \(\gamma\in\Gamma_\omega=\mathbb{Z}+\omega\mathbb{Z}\), then $$-\frac{\sigma(z+a+\gamma)\sigma(z-a+\gamma)}{\sigma(z+\gamma)^2\sigma(a)^2}\overset{prop\ \theta -fct}{=}$$ $$-\frac{e^{a_\gamma(z+a)+b_\gamma}\sigma(z+a)e^{a_\gamma(z-a)+b_\gamma}\sigma(z-a)}{(e^{a_\gamma z+b_\gamma}\sigma(z))^2\sigma(a)^2}=$$ $$-\frac{e^{2a_\gamma z+2b_\gamma}\sigma(z+a)\sigma(z-a)}{e^{2a_{\gamma} z+2b_\gamma}\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$.
+
#Periodic in two directions'': Let \(\gamma\in\Gamma_\omega=\mathbb{Z}+\omega\mathbb{Z}\), then $$-\frac{\sigma(z+a+\gamma)\sigma(z-a+\gamma)}{\sigma(z+\gamma)^2\sigma(a)^2}\overset{prop\ \theta -fct}{=}$$ $$-\frac{e^{a_\gamma(z+a)+b_\gamma}\sigma(z+a)e^{a_\gamma(z-a)+b_\gamma}\sigma(z-a)}{(e^{a_\gamma z+b_\gamma}\sigma(z))^2\sigma(a)^2}=$$ $$-\frac{e^{2a_\gamma z+2b_\gamma}\sigma(z+a)\sigma(z-a)}{e^{2a_{\gamma} z+2b_\gamma}\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$.
 +
#''Meromorphic'': $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{(z+a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}}](z-a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{(z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}})^2(a\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{a}{\gamma})e^{\frac{a}{\gamma}+\frac{a^2}{2\gamma ^2}})^2}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}+\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{a^2}{\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2(\gamma-z-a)(\gamma-z+a)e^{\frac{-2a}{\gamma}}}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(\gamma-z)^2 (\gamma-a)^2}=$$ $$-\frac{(z+a)(z-a)}{z^2a^2}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2 e^{-\frac{2a}{\gamma}}\frac{(z+a-\gamma)(z-a-\gamma)}{(\gamma-z)^2(\gamma-a)^2}$$ \(\Rightarrow\) it's meromorphic and we observe that zeros and poles are as claimed. Meromorphic + 2-periodic = elliptical
 +
<p style="text-align:right;">\(\square\)</p>
  
''ii) Meromorphic'' $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{(z+a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}}](z-a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{(z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}})^2(a\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{a}{\gamma})e^{\frac{a}{\gamma}+\frac{a^2}{2\gamma ^2}})^2}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}+\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{a^2}{\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2(\gamma-z-a)(\gamma-z+a)e^{\frac{-2a}{\gamma}}}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(\gamma-z)^2 (\gamma-a)^2}=$$ $$-\frac{(z+a)(z-a)}{z^2a^2}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2 e^{-\frac{2a}{\gamma}}\frac{(z+a-\gamma)(z-a-\gamma)}{(\gamma-z)^2(\gamma-a)^2}$$ \(\Rightarrow\) it's meromorphic and we observe that zeros and poles are as claimed. Meromorphic + 2-periodic = elliptical \(\square\)
+
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
  
 
'''Claim''': \(f,g\) elliptic with same poles, zeros then \(f=Ag\), with \(A\) const
 
'''Claim''': \(f,g\) elliptic with same poles, zeros then \(f=Ag\), with \(A\) const
Line 46: Line 44:
 
Then we write $$f(z)=h(z)\frac{\prod_{a_i zero}(z-a_i)}{\prod_{b_i pole}(z-b_i)},\ \ g(z)=l(z)\frac{\prod_{a_i\  zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}$$ with \(h,l\) analytic and with prop. of above.
 
Then we write $$f(z)=h(z)\frac{\prod_{a_i zero}(z-a_i)}{\prod_{b_i pole}(z-b_i)},\ \ g(z)=l(z)\frac{\prod_{a_i\  zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}$$ with \(h,l\) analytic and with prop. of above.
  
If \(f,g\) elliptic, then \(\frac{f}{g}\)  is elliptic too: \(\frac{f}{g}=\frac{h(z)}{l(z)}\) analitic as a quotient of analitic functions, then \(\frac{h(z)}{l(z)}\) has no singularities and then no poles. But an elliptic function without poles is constant since \(q(z):=\frac{h(z)}{l(z)},\ q(\mathbb{C})=q(P)\) compact, where \(P\) fundamental parallelogram, so bounded and after Liouville is \(q(z)\) constant) \(\Rightarrow \ f(z)=\frac{h(z)}{l(z)}g(z)=Ag\ \square\)
+
If \(f,g\) elliptic, then \(\frac{f}{g}\)  is elliptic too: \(\frac{f}{g}=\frac{h(z)}{l(z)}\) analitic as a quotient of analitic functions, then \(\frac{h(z)}{l(z)}\) has no singularities and then no poles. But an elliptic function without poles is constant since \(q(z):=\frac{h(z)}{l(z)},\ q(\mathbb{C})=q(P)\) compact, where \(P\) fundamental parallelogram, so bounded and after Liouville is \(q(z)\) constant) \(\Rightarrow \ f(z)=\frac{h(z)}{l(z)}g(z)=Ag\)
 +
<p style="text-align:right;">\(\square\)</p>
 +
 
 +
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
  
 
'''Claim''': Assuming that $$\wp(z)-\wp(a)=K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$ we claim that \(K=-1\)
 
'''Claim''': Assuming that $$\wp(z)-\wp(a)=K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$ we claim that \(K=-1\)
Line 55: Line 56:
  
 
\(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$
 
\(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$
\(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\blacksquare\)
+
\(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\)
 +
<p style="text-align:right;">\(\blacksquare\)</p>
  
 +
<hr style="border:0;border-top:dashed #a6a6a6;background:none;"/>
  
----
+
<span style="color:#2f2f2f;font-size:85%;">''Note'': In the lecture we saw that \(\vartheta\) functions are analytic and then \(\sigma\) analytic: when we want to show that \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is meromorphic, it's enough write that as a product / combination of analytic function it's analytic too except points for which the denominator is zero. This means that the zeros of the function are the ones of the numerator, while the poles the ones of the denominator.</span>
''Note'': In the lecture we saw that \(\vartheta\) functions are analytic and then \(\sigma\) analytic: when we want to show that \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is meromorphic, it's enough write that as a product / combination of analytic function it's analytic too except points for which the denominator is zero. This means that the zeros of the function are the ones of the numerator, while the poles the ones of the denominator.
+
  
 
== Exercise b) ==
 
== Exercise b) ==
Line 66: Line 68:
 
=== Solution b) ===
 
=== Solution b) ===
  
$$\wp '(a)=\lim_{z\rightarrow a} \frac{\wp(z)-\wp(a)}{z-a}\overset{a)}{=}$$ $$\lim_{z\rightarrow a}-\frac{\sigma(z+a)\sigma(z-a)}{(z-a)\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{z\rightarrow a}\frac{\sigma(z-a)}{z-a}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}\overset{a)}{=}$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\blacksquare$$
+
$$\wp '(a)=\lim_{z\rightarrow a} \frac{\wp(z)-\wp(a)}{z-a}\overset{a)}{=}$$ $$\lim_{z\rightarrow a}-\frac{\sigma(z+a)\sigma(z-a)}{(z-a)\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{z\rightarrow a}\frac{\sigma(z-a)}{z-a}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}\overset{a)}{=}$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}$$
 +
<p style="text-align:right;">\(\blacksquare\)</p>

Revision as of 07:48, 5 January 2015

Problem

Recall, \(\vartheta\) is a theta function relative to a lattice \(\Gamma_{\omega}=\mathbb{Z}+\mathbb{Z}\omega\), \(\omega\in\mathbb{H}\), if \(\vartheta\) is entire and \(\forall\gamma\in\Gamma_{\omega}\ \exists a_{\gamma},b_{\gamma}\in\mathbb{C}\) such that \(\vartheta\left(z+\gamma\right)=e^{a_{\gamma}z+b_{\gamma}}\vartheta(z),\ \forall z\in\mathbb{C}\). Consider the following theta function relative to \(\Gamma_{\omega}\) (you may assume that the product converges and that \(\sigma\) satisfies the above definition): $$\sigma(z)=z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\left(1-\frac{z}{\gamma}\right )e^{\frac{z}{\gamma}+\frac{z^{2}}{2\gamma^{2}}}$$

Exercise a)

Show that \(\forall a\notin\Gamma_{\omega}\), $$\wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^{2}\sigma(a)^{2}}$$ where \(\wp=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+c_1\) is the Weiertrass \(\wp\)-function, and \(\theta(z)=\sum_{n=-\infty}^{\infty}e^{2\pi inz}e^{\pi i\omega z^2}\) is the Riemann theta function and \(c_1\) is the coefficient in the expansion \(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})=\frac{1}{z}+c_0+c_1z+\cdots\)

Hint: show that both sides of the equality are elliptic funtions with the same poles and zeros.

Solution a)

From Serie 9, ex 1 we know that \(\wp\) is elliptic and then \(\wp(z)-\wp(a)\) is elliptic too (elliptic fct \(\pm\) const: still meromorphic and 2-per)

Claim: \(\wp(z)-\wp(a)\) has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\Gamma_\omega\)

Proof:

  1. $$\begin{align}\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}\frac{\theta '(z+\frac{1+\omega}{2})}{\theta(z+\frac{1+\omega}{2})}+const=$$ $$-\frac{\theta" (z+\frac{1+\omega}{2})\theta(z+\frac{1+\omega}{2})-(\theta '(z+\frac{1+\omega}{2}))^2}{\theta(z+\frac{1+\omega}{2})^2}+const\end{align}$$
  2. \(\theta\) holomorphic \(\theta',\theta"\) holomorphic too, and then the uinique poles of \(\wp(z)-\wp(a)\equiv\) the zeros of \(\theta(z+\frac{1+\omega}{2})\)
  3. 'Proposition on lecture notes (p. 37 Fourier-Heat-ecc): \(\theta(\gamma+\frac{1+\omega}{2})=0\forall\gamma\in\Gamma_\omega\)
  4. $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}(\frac{1}{z}+c_0+c_1z+\cdots)+c_1+const=$$ $$-(-\frac{1}{z^2}+2c_1+\cdots)+const$$ \(\Rightarrow z=0\) poles of second order.
  5. \(\wp(z)-\wp(a)\) elliptic on \(\Gamma_\omega\Rightarrow\) every \(\gamma\in\Gamma_\omega\) is a pole of order 2.
  6. NB: thanks to ellipticity (double periodicity) we can "move" the parallelogram such that there are no poles / zeros on the boundary. Consider a new parallelogram \(P\) with \(z=0\) inside it. From complex analysis: Prop 1.6: \(f\ elliptic\Rightarrow \int_{\partial P} fdz=0\) and argument principle: \(\int_{\partial P} \frac{f'}{f}dz=2\pi i[N_0-N_\infty]\). Where \(N_0,N_\infty\) are the number of zeros respectively poles with multiplicity counted. If \(f\ elliptic\Rightarrow \frac{f'}{f}\) is elliptic and then, from prop 1.6 \(\int_{\partial P} \frac{f'}{f}=0\Rightarrow N_0=N_\infty\). From 4. we have \(N_\infty=2\Rightarrow N_0=2\)
  7. \(\wp(z)-\wp(a)=0\iff\wp(z)=\wp(a)\overset{\wp\ is\ even}{=}\wp(-a)\Rightarrow\ z=\pm a\) are zeros of \(\wp(z)-\wp(a)\). From vi) we know that they are the only zeros in \(P\) (W.l.o.g \(a\in P\) as we can move the parallelogram).
  8. Ellipticity \(\Rightarrow z\) zero \(\iff z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\)

\(\square\)


Claim: \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is elliptic and has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)

Proof:

  1. Periodic in two directions: Let \(\gamma\in\Gamma_\omega=\mathbb{Z}+\omega\mathbb{Z}\), then $$-\frac{\sigma(z+a+\gamma)\sigma(z-a+\gamma)}{\sigma(z+\gamma)^2\sigma(a)^2}\overset{prop\ \theta -fct}{=}$$ $$-\frac{e^{a_\gamma(z+a)+b_\gamma}\sigma(z+a)e^{a_\gamma(z-a)+b_\gamma}\sigma(z-a)}{(e^{a_\gamma z+b_\gamma}\sigma(z))^2\sigma(a)^2}=$$ $$-\frac{e^{2a_\gamma z+2b_\gamma}\sigma(z+a)\sigma(z-a)}{e^{2a_{\gamma} z+2b_\gamma}\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$.
  2. Meromorphic: $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{(z+a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}}](z-a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{(z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}})^2(a\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{a}{\gamma})e^{\frac{a}{\gamma}+\frac{a^2}{2\gamma ^2}})^2}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}+\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{a^2}{\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2(\gamma-z-a)(\gamma-z+a)e^{\frac{-2a}{\gamma}}}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(\gamma-z)^2 (\gamma-a)^2}=$$ $$-\frac{(z+a)(z-a)}{z^2a^2}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2 e^{-\frac{2a}{\gamma}}\frac{(z+a-\gamma)(z-a-\gamma)}{(\gamma-z)^2(\gamma-a)^2}$$ \(\Rightarrow\) it's meromorphic and we observe that zeros and poles are as claimed. Meromorphic + 2-periodic = elliptical

\(\square\)


Claim: \(f,g\) elliptic with same poles, zeros then \(f=Ag\), with \(A\) const

Proof: We know that a function \(k(z)\) with zeros \(a_1 ,\cdots ,a_m\), poles \(b_1, \cdots , b_r\) can be written as \(k(z)=q(z)\frac{\prod_{a_i\ zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}\) with \(q(z)\) analitic and \(q(a_i)\neq 0\ \forall a_i, q(b_i)\neq 0\ \forall b_i\).

Then we write $$f(z)=h(z)\frac{\prod_{a_i zero}(z-a_i)}{\prod_{b_i pole}(z-b_i)},\ \ g(z)=l(z)\frac{\prod_{a_i\ zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}$$ with \(h,l\) analytic and with prop. of above.

If \(f,g\) elliptic, then \(\frac{f}{g}\) is elliptic too: \(\frac{f}{g}=\frac{h(z)}{l(z)}\) analitic as a quotient of analitic functions, then \(\frac{h(z)}{l(z)}\) has no singularities and then no poles. But an elliptic function without poles is constant since \(q(z):=\frac{h(z)}{l(z)},\ q(\mathbb{C})=q(P)\) compact, where \(P\) fundamental parallelogram, so bounded and after Liouville is \(q(z)\) constant) \(\Rightarrow \ f(z)=\frac{h(z)}{l(z)}g(z)=Ag\)

\(\square\)


Claim: Assuming that $$\wp(z)-\wp(a)=K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$ we claim that \(K=-1\)

Proof: $$\lim_{z\rightarrow 0} z^2(\wp(z)-\wp(a))=$$ $$\lim_{z\rightarrow 0}z^2\wp(z)-\overset{=0}{\overbrace{\lim_{z\rightarrow 0}z^2\wp(a)}}=$$ $$\lim_{z\rightarrow 0}z^2(-\frac{d}{dz}(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})+c_1))=$$ $$-\lim_{z\rightarrow 0}z^2(\frac{d}{dz}(\frac{1}{z}+c_0+zc_1+\cdots))=$$ $$-\lim_{z\rightarrow 0}z^2(-\frac{1}{z^2}+c_1+\cdots)=1$$ but \(\lim_{z\rightarrow 0}\wp(z)-\wp(a)=\lim_{z\rightarrow 0}K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\Rightarrow 1=\lim_{z\rightarrow 0}z^2 K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\)

Now we prove that \(\sigma\) is odd and that \(\lim_{z\rightarrow 0}\sigma(z)/z=1\):

\(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$ \(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\)

\(\blacksquare\)


Note: In the lecture we saw that \(\vartheta\) functions are analytic and then \(\sigma\) analytic: when we want to show that \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is meromorphic, it's enough write that as a product / combination of analytic function it's analytic too except points for which the denominator is zero. This means that the zeros of the function are the ones of the numerator, while the poles the ones of the denominator.

Exercise b)

Show that $$\wp'(a)=-\frac{\sigma(2a)}{\sigma(a)^4},\ \forall a\notin\Gamma_{\omega}$$

Solution b)

$$\wp '(a)=\lim_{z\rightarrow a} \frac{\wp(z)-\wp(a)}{z-a}\overset{a)}{=}$$ $$\lim_{z\rightarrow a}-\frac{\sigma(z+a)\sigma(z-a)}{(z-a)\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{z\rightarrow a}\frac{\sigma(z-a)}{z-a}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}\overset{a)}{=}$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}$$

\(\blacksquare\)