Difference between revisions of "Aufgaben:Problem 15"

From Ferienserie MMP2
Jump to: navigation, search
(Solutions)
Line 56: Line 56:
 
Now we prove that \(\sigma\) is odd and that \(\lim_{z\rightarrow 0}\sigma(z)/z=1\): \(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$
 
Now we prove that \(\sigma\) is odd and that \(\lim_{z\rightarrow 0}\sigma(z)/z=1\): \(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$
 
\(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\blacksquare\)
 
\(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\blacksquare\)
 +
 +
 +
== Solution b ==
 +
 +
$$\wp '(a)=\lim_{z\rightarrow a} \frac{\wp(z)-\wp(a)}{z-a}\overset{a)}{=}$$ $$\lim_{z\rightarrow a}-\frac{\sigma(z+a)\sigma(z-a)}{(z-a)\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{r\rightarrow a}\frac{\sigma(z-a)}{z-a}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{r\rightarrow a}\frac{z-a}{z-a}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}\overset{Assume\ \prod<\infty}{=}$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\lim_{r\rightarrow a}(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}=$$ $$\-frac{\sigma(2a)}{\sigma(a)^4}\blacksquare$$

Revision as of 15:06, 28 December 2014

Problem

Recall, \(\vartheta\) is a theta function relative to a lattice \(\Gamma_{\omega}=\mathbb{Z}+\mathbb{Z}\omega\), \(\omega\in\mathbb{H}\), if \(\vartheta\) is entire and \(\forall\gamma\in\Gamma_{\omega}\ \exists a_{\gamma},b_{\gamma}\in\mathbb{C}\) such that \(\vartheta\left(z+\gamma\right)=e^{a_{\gamma}z+b_{\gamma}}\vartheta(z),\ \forall z\in\mathbb{C}\). Consider the following theta function relative to \(\Gamma_{\omega}\) (you may assume that the product converges and that \(\sigma\) satisfies the above definition): $$\sigma(z)=z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\left(1-\frac{z}{\gamma}\right )e^{\frac{z}{\gamma}+\frac{z^{2}}{2\gamma^{2}}}$$

a) Show that \(\forall a\notin\Gamma_{\omega}\), $$\wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^{2}\sigma(a)^{2}}$$ where \(\wp=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2}+c_1)\) is the Weiertrass \(\wp\)-function, and \(\theta(z)=\sum_{n=-\infty}^{\infty}e^{2\pi inz}e^{\pi i\omega z^2}\) is the Riemann theta function and \(c_1\) is the coefficient in the expansion \(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})=\frac{1}{z}+c_0+c_1z+\cdots\)

Hint: show that both sides of the equality are elliptic funtions with the same poles and zeros.

b) Show that $$\wp'(a)=-\frac{\sigma(2a)}{\sigma(a)^4},\ \forall a\notin\Gamma_{\omega}$$

Solution a

From Serie 9, ex 1 we know that \(\wp\) is elliptic and then \(\wp(z)-\wp(a)\) is elliptic too (elliptic fct \(\pm\) const: still meromorphic and 2-per)

Claim: \(\wp(z)-\wp(a)\) has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)

Proof:

i): $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}\frac{\theta '(z+\frac{1+\omega}{2})}{\theta(z+\frac{1+\omega}{2})}+const=$$ $$-\frac{\theta" (z+\frac{1+\omega}{2})\theta(z+\frac{1+\omega}{2})-(\theta '(z+\frac{1+\omega}{2}))^2}{\theta(z+\frac{1+\omega}{2})^2}+const$$

ii): \(\theta\) holomorphic \(\theta',\theta"\) holomorphic too, and then the uinique poles of \(\wp(z)-\wp(a)\equiv\) the zeros of \(\theta(z+\frac{1+\omega}{2})\)

iii): Proposition on lecture notes (p. 37 Fourier-Heat-ecc): \(\theta(\gamma+\frac{1+\omega}{2})=0\forall\gamma\in\Gamma_\omega\)

iv): $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}(\frac{1}{z}+c_0+c_1z+\cdots)+const=$$ $$-(-\frac{1}{z^2}+c_1+\cdots)+const$$ \(\Rightarrow z=0\) pole of second order.

v): \(\wp(z)-\wp(a)\) elliptic on \(\Gamma_\omega\Rightarrow\) every \(\gamma\in\Gamma_\omega\) is a pole of order 2.

vi): NB: thanks to ellipticity (double periodicity) we can "move" the parallelogram such that there are no poles / zeros on the boundary. Consider a new parallelogram \(P\) with \(z=0\) inside it. From complex analysis: Prop 1.6: \(f\ elliptic\Rightarrow \int_{\partial P} fdz=0\) and argument principle: \(\int_{\partial P} \frac{f'}{f}dz=2\pi i[N_0-N_infty]\). Where \(N_0,N_\infty\) are the number of zeros respectively poles with multiplicity conted. If \(f\ elliptic\Rightarrow \frac{f'}{f}\) is elliptic and then, from prop 1.6 \(\int_{\partial P} \frac{f'}{f}=0\Rightarrow N_0=N_\infty\). From iv) we have \(N_\infty=2\Rightarrow N_0=2\)

vii): \(\wp(z)-\wp(a)=0\iff\wp(z)=\wp(a)\overset{\wp\ is\ even}{=}\wp(-a)\Rightarrow\z=\pm a\) are zeros of \(\wp(z)-\wp(a)\). From vi we know that they are the only zeros in \(P\) (W.l.o.g \(a\in P\) as we can move the parallelogram).

viii): Ellipticity \(\Rightarrow z\) zero \(\iff z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\square\)

Claim: \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is elliptic and has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)

Proof:

i) Periodic in two directions: Let \(\gamma\in\Gamma_\omega=\mathbb{Z}+\omega\mathbb{Z}\), then $$-\frac{\sigma(z+a+\gamma)\sigma(z-a+\gamma)}{\sigma(z+\gamma)^2\sigma(a)^2}\overset{prop\ \theta -fct}{=}$$ $$-\frac{e^{a_\gamma(z+a)+b_\gamma}\sigma(z+a)e^{a_\gamma(z-a)+b_\gamma}\sigma(z-a)}{(e^{a_\gamma z+b_\gamma}\sigma(z))^2\sigma(a)^2}=$$ $$-\frac{e^{2a_\gamma z+2b_\gamma}\sigma(z+a)\sigma(z-a)}{e^{2a_{\gamma} z+2b_\gamma}\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$.

ii) Meromorphic $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{(z+a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}}](z-a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{(z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}})^2(a\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{a}{\gamma})e^{\frac{a}{\gamma}+\frac{a^2}{2\gamma ^2}})^2}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}+\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{a^2}{\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2(\gamma-z-a)(\gamma-z+a)e^{\frac{-2a}{\gamma}}}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(\gamma-z)^2 (\gamma-a)^2}=$$ $$-\frac{(z+a)(z-a)}{z^2a^2}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2 e^{-\frac{2a}{\gamma}}\frac{(z+a-\gamma)(z-a-\gamma)}{(\gamma-z)^2(\gamma-a)^2}$$ \(\Rightarrow\) it's meromorphic and we observe that zeros and poles are as claimed. Meromorphic + 2-periodic = elliptical \(\square\)

Claim: \(f,g\) elliptic with same pole, zeros then \(f=Ag\), with \(A\) const

Proof: We know that a function \(k(z)\) with zeros \(a_1 ,\cdots ,a_m\), pole \(b_1, \cdots , b_r\) can be written as \(k(z)=q(z)\frac{\prod_{a_i\ zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}\) with \(q(z)\) analitic and \(q(a_i)\neq 0\ \forall a_i, q(b_i)\neq 0\ \forall b_i\).

Then we write $$f(z)=h(z)\frac{\prod_{a_i zero}(z-a_i)}{\prod_{b_i pole}(z-b_i)},\ \ g(z)=l(z)\frac{\prod_{a_i\ zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}$$ with \(h,l\) analytic and with prop. of above.

If \(f,g\) elliptic, then \(\frac{f}{g}\) is elliptic too: \(\frac{f}{g}=\frac{h(z)}{l(z)}\) analitic as a quotient of analitic functions, then \(\frac{h(z)}{l(z)}\) has no singularities and then no pole. But an elliptic function without pole is constant \(q(z):=\frac{h(z)}{l(z)},\ q(\mathbb{C})=q(\Gamma_\omega)\) compact, so bounded and after Liouville is \(q(z)\) constant) \(\Rightarrow \ f(z)=\frac{h(z)}{l(z)}g(z)=Ag\ \square\)

Claim: Assuming that $$\wp(z)-\wp(a)=K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$ we claim that \(K=-1\)

Proof: $$\lim_{z\rightarrow 0} z^2(\wp(z)-\wp(a))=$$ $$\lim_{z\rightarrow 0}z^2\wp(z)-\overset{=0}{\overbrace{\lim_{z\rightarrow 0}z^2\wp(a)}}=$$ $$\lim_{z\rightarrow 0}z^2(-\frac{d}{dz}(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})+c_1))=$$ $$-\lim_{z\rightarrow 0}z^2(\frac{d}{dz}(\frac{1}{z}+c_0+zc_1+\cdots))=$$ $$-\lim_{z\rightarrow 0}z^2(-\frac{1}{z^2}+c_1+\cdots)=1$$ but \(\lim_{z\rightarrow 0}\wp(z)-\wp(a)=\lim_{z\rightarrow 0}K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\Rightarrow 1=\lim_{z\rightarrow 0}K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\)

Now we prove that \(\sigma\) is odd and that \(\lim_{z\rightarrow 0}\sigma(z)/z=1\): \(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$ \(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\blacksquare\)


Solution b

$$\wp '(a)=\lim_{z\rightarrow a} \frac{\wp(z)-\wp(a)}{z-a}\overset{a)}{=}$$ $$\lim_{z\rightarrow a}-\frac{\sigma(z+a)\sigma(z-a)}{(z-a)\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{r\rightarrow a}\frac{\sigma(z-a)}{z-a}=$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\lim_{r\rightarrow a}\frac{z-a}{z-a}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}\overset{Assume\ \prod<\infty}{=}$$ $$-\frac{\sigma(2a)}{\sigma(a)^4}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\lim_{r\rightarrow a}(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}=$$ $$\-frac{\sigma(2a)}{\sigma(a)^4}\blacksquare$$