Difference between revisions of "Aufgaben:Problem 15"

From Ferienserie MMP2
Jump to: navigation, search
(Solutions)
(Solutions)
Line 9: Line 9:
 
''b)'' Show that $$\wp'(a)=-\frac{\sigma(2a)}{\sigma(a)^4},\ \forall a\notin\Gamma_{\omega}$$
 
''b)'' Show that $$\wp'(a)=-\frac{\sigma(2a)}{\sigma(a)^4},\ \forall a\notin\Gamma_{\omega}$$
  
== Solutions ==
+
== Solution a ==
  
From '''''Freitag, Busam - Funktionentheorie''''' [Springer], Problem V.6.4 is exactly the same problem (the hint is related too): only to add some proofs.
 
  
It says: "Auf beiden Seiten steht bei festem \(a\) eine elliptische Funktion mit denselben Nullstellen \((\pm a)\) und Polstellen (to prove 1). Daher stimmen sie bis auf einen konstanten Faktor überein (to prove 2). Für die Normierung benutzt man die Beziehung \(\lim_{z\rightarrow 0}z^2(\wp(z)-\wp(a))=1\). dass auf der rechten Seite dasselbe herauskommt, folgt aus den Relationen \(\sigma(a)=-\sigma(-a)\) und \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=1\), welche unmittelbar aus der Definition folgen (better see the passages)."
 
 
From Serie 9, ex 1 we know that \(\wp\) is elliptic and then \(\wp(z)-\wp(a)\) is elliptic too (elliptic fct \(\pm\) const: still meromorphic and 2-per)
 
From Serie 9, ex 1 we know that \(\wp\) is elliptic and then \(\wp(z)-\wp(a)\) is elliptic too (elliptic fct \(\pm\) const: still meromorphic and 2-per)
  

Revision as of 14:56, 28 December 2014

Problem

Recall, \(\vartheta\) is a theta function relative to a lattice \(\Gamma_{\omega}=\mathbb{Z}+\mathbb{Z}\omega\), \(\omega\in\mathbb{H}\), if \(\vartheta\) is entire and \(\forall\gamma\in\Gamma_{\omega}\ \exists a_{\gamma},b_{\gamma}\in\mathbb{C}\) such that \(\vartheta\left(z+\gamma\right)=e^{a_{\gamma}z+b_{\gamma}}\vartheta(z),\ \forall z\in\mathbb{C}\). Consider the following theta function relative to \(\Gamma_{\omega}\) (you may assume that the product converges and that \(\sigma\) satisfies the above definition): $$\sigma(z)=z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\left(1-\frac{z}{\gamma}\right )e^{\frac{z}{\gamma}+\frac{z^{2}}{2\gamma^{2}}}$$

a) Show that \(\forall a\notin\Gamma_{\omega}\), $$\wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^{2}\sigma(a)^{2}}$$ where \(\wp=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2}+c_1)\) is the Weiertrass \(\wp\)-function, and \(\theta(z)=\sum_{n=-\infty}^{\infty}e^{2\pi inz}e^{\pi i\omega z^2}\) is the Riemann theta function and \(c_1\) is the coefficient in the expansion \(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})=\frac{1}{z}+c_0+c_1z+\cdots\)

Hint: show that both sides of the equality are elliptic funtions with the same poles and zeros.

b) Show that $$\wp'(a)=-\frac{\sigma(2a)}{\sigma(a)^4},\ \forall a\notin\Gamma_{\omega}$$

Solution a

From Serie 9, ex 1 we know that \(\wp\) is elliptic and then \(\wp(z)-\wp(a)\) is elliptic too (elliptic fct \(\pm\) const: still meromorphic and 2-per)

Claim: \(\wp(z)-\wp(a)\) has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)

Proof:

i): $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}\frac{\theta '(z+\frac{1+\omega}{2})}{\theta(z+\frac{1+\omega}{2})}+const=$$ $$-\frac{\theta" (z+\frac{1+\omega}{2})\theta(z+\frac{1+\omega}{2})-(\theta '(z+\frac{1+\omega}{2}))^2}{\theta(z+\frac{1+\omega}{2})^2}+const$$

ii): \(\theta\) holomorphic \(\theta',\theta"\) holomorphic too, and then the uinique poles of \(\wp(z)-\wp(a)\equiv\) the zeros of \(\theta(z+\frac{1+\omega}{2})\)

iii): Proposition on lecture notes (p. 37 Fourier-Heat-ecc): \(\theta(\gamma+\frac{1+\omega}{2})=0\forall\gamma\in\Gamma_\omega\)

iv): $$\wp(z)-\wp(a)=-\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})+\frac{d^2}{dz^2}\log\theta(z+\frac{1+\omega}{2})|_{z=a}=$$ $$-\frac{d}{dz}(\frac{1}{z}+c_0+c_1z+\cdots)+const=$$ $$-(-\frac{1}{z^2}+c_1+\cdots)+const$$ \(\Rightarrow z=0\) pole of second order.

v): \(\wp(z)-\wp(a)\) elliptic on \(\Gamma_\omega\Rightarrow\) every \(\gamma\in\Gamma_\omega\) is a pole of order 2.

vi): NB: thanks to ellipticity (double periodicity) we can "move" the parallelogram such that there are no poles / zeros on the boundary. Consider a new parallelogram \(P\) with \(z=0\) inside it. From complex analysis: Prop 1.6: \(f\ elliptic\Rightarrow \int_{\partial P} fdz=0\) and argument principle: \(\int_{\partial P} \frac{f'}{f}dz=2\pi i[N_0-N_infty]\). Where \(N_0,N_\infty\) are the number of zeros respectively poles with multiplicity conted. If \(f\ elliptic\Rightarrow \frac{f'}{f}\) is elliptic and then, from prop 1.6 \(\int_{\partial P} \frac{f'}{f}=0\Rightarrow N_0=N_\infty\). From iv) we have \(N_\infty=2\Rightarrow N_0=2\)

vii): \(\wp(z)-\wp(a)=0\iff\wp(z)=\wp(a)\overset{\wp\ is\ even}{=}\wp(-a)\Rightarrow\z=\pm a\) are zeros of \(\wp(z)-\wp(a)\). From vi we know that they are the only zeros in \(P\) (W.l.o.g \(a\in P\) as we can move the parallelogram).

viii): Ellipticity \(\Rightarrow z\) zero \(\iff z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\square\)

Claim: \(-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\) is elliptic and has zeros first order in every \(z\in\left\{\pm a+\gamma | \gamma\in\Gamma_\omega\right\}\) and poles second order in every \(z\in\left\{\Gamma_\omega\right\}\)

Proof:

i) Periodic in two directions: Let \(\gamma\in\Gamma_\omega=\mathbb{Z}+\omega\mathbb{Z}\), then $$-\frac{\sigma(z+a+\gamma)\sigma(z-a+\gamma)}{\sigma(z+\gamma)^2\sigma(a)^2}\overset{prop\ \theta -fct}{=}$$ $$-\frac{e^{a_\gamma(z+a)+b_\gamma}\sigma(z+a)e^{a_\gamma(z-a)+b_\gamma}\sigma(z-a)}{(e^{a_\gamma z+b_\gamma}\sigma(z))^2\sigma(a)^2}=$$ $$-\frac{e^{2a_\gamma z+2b_\gamma}\sigma(z+a)\sigma(z-a)}{e^{2a_{\gamma} z+2b_\gamma}\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$.

ii) Meromorphic $$-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}=$$ $$-\frac{(z+a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}}](z-a)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z-a}{\gamma})e^{\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{(z\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}})^2(a\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{a}{\gamma})e^{\frac{a}{\gamma}+\frac{a^2}{2\gamma ^2}})^2}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{z+a}{\gamma}+\frac{(z+a)^2}{2\gamma ^2}+\frac{z-a}{\gamma}+\frac{(z-a)^2}{2\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z+a}{\gamma})(1-\frac{z-a}{\gamma})e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{a^2}{\gamma ^2}}]}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}[(1-\frac{z}{\gamma})^2 (1-\frac{a}{\gamma})^2 e^{\frac{2z}{\gamma}+\frac{z^2}{\gamma ^2}+\frac{2a}{\gamma}+\frac{a^2}{\gamma ^2}}]}=$$ $$-\frac{(z^2-a^2)\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2(\gamma-z-a)(\gamma-z+a)e^{\frac{-2a}{\gamma}}}{z^2a^2\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}(\gamma-z)^2 (\gamma-a)^2}=$$ $$-\frac{(z+a)(z-a)}{z^2a^2}\prod_{\gamma\in\Gamma_{\omega},\gamma\neq 0}\gamma^2 e^{-\frac{2a}{\gamma}}\frac{(z+a-\gamma)(z-a-\gamma)}{(\gamma-z)^2(\gamma-a)^2}$$ \(\Rightarrow\) it's meromorphic and we observe that zeros and poles are as claimed. Meromorphic + 2-periodic = elliptical \(\square\)

Claim: \(f,g\) elliptic with same pole, zeros then \(f=Ag\), with \(A\) const

Proof: We know that a function \(k(z)\) with zeros \(a_1 ,\cdots ,a_m\), pole \(b_1, \cdots , b_r\) can be written as \(k(z)=q(z)\frac{\prod_{a_i\ zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}\) with \(q(z)\) analitic and \(q(a_i)\neq 0\ \forall a_i, q(b_i)\neq 0\ \forall b_i\).

Then we write $$f(z)=h(z)\frac{\prod_{a_i zero}(z-a_i)}{\prod_{b_i pole}(z-b_i)},\ \ g(z)=l(z)\frac{\prod_{a_i\ zero}(z-a_i)}{\prod_{b_i\ pole}(z-b_i)}$$ with \(h,l\) analytic and with prop. of above.

If \(f,g\) elliptic, then \(\frac{f}{g}\) is elliptic too: \(\frac{f}{g}=\frac{h(z)}{l(z)}\) analitic as a quotient of analitic functions, then \(\frac{h(z)}{l(z)}\) has no singularities and then no pole. But an elliptic function without pole is constant \(q(z):=\frac{h(z)}{l(z)},\ q(\mathbb{C})=q(\Gamma_\omega)\) compact, so bounded and after Liouville is \(q(z)\) constant) \(\Rightarrow \ f(z)=\frac{h(z)}{l(z)}g(z)=Ag\ \square\)

Claim: Assuming that $$\wp(z)-\wp(a)=K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$ we claim that \(K=-1\)

Proof: $$\lim_{z\rightarrow 0} z^2(\wp(z)-\wp(a))=$$ $$\lim_{z\rightarrow 0}z^2\wp(z)-\overset{=0}{\overbrace{\lim_{z\rightarrow 0}z^2\wp(a)}}=$$ $$\lim_{z\rightarrow 0}z^2(-\frac{d}{dz}(\frac{d}{dz}\log\theta(z+\frac{1+\omega}{2})+c_1))=$$ $$-\lim_{z\rightarrow 0}z^2(\frac{d}{dz}(\frac{1}{z}+c_0+zc_1+\cdots))=$$ $$-\lim_{z\rightarrow 0}z^2(-\frac{1}{z^2}+c_1+\cdots)=1$$ but \(\lim_{z\rightarrow 0}\wp(z)-\wp(a)=\lim_{z\rightarrow 0}K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\Rightarrow 1=\lim_{z\rightarrow 0}K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\)

Now we prove that \(\sigma\) is odd and that \(\lim_{z\rightarrow 0}\sigma(z)/z=1\): \(\sigma(-z)=-z\prod(1+\frac{z}{\gamma})e^{\frac{-z}{\gamma}+\frac{z^2}{2\gamma^2}}\overset{\gamma '=-\gamma}{=}-z\prod(1-\frac{z}{\gamma '})e^{\frac{z}{\gamma '}+\frac{z^2}{2\gamma '^2}}=-\sigma(z)\) and \(\lim_{z\rightarrow 0}\frac{\sigma(z)}{z}=\lim_{z\rightarrow 0}\prod(1-\frac{z}{\gamma})e^{\frac{z}{\gamma}+\frac{z^2}{2\gamma ^2}}=\prod1=1\Rightarrow\) $$1=\lim_{z\rightarrow 0}z^2(K\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2})=$$ $$\lim_{z\rightarrow 0}K\frac{z^2}{\sigma(z)^2}\frac{\sigma(z+a)\sigma(z-a)}{\sigma(a)^2}=$$ $$K\frac{\sigma(a)\sigma(-a)}{\sigma(a)^2}=$$ $$=K\frac{-\sigma(a)^2}{\sigma(a)^2}=-K\Rightarrow K=-1$$ \(\Rightarrow \wp(z)-\wp(a)=-\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}\blacksquare\)