Difference between revisions of "Aufgaben:Problem 14"

From Ferienserie MMP2
Jump to: navigation, search
(Prblem 4b)
(Solution)
Line 55: Line 55:
 
iii) Conclude that, then there is initial data for (IVP) for which no global solution \( u \in C^2(S^1 \times [0,\inf)) \) exists.
 
iii) Conclude that, then there is initial data for (IVP) for which no global solution \( u \in C^2(S^1 \times [0,\inf)) \) exists.
  
=Solution=
+
=Solution i)=
 
We want to show uniqueness of the IVP problem.  
 
We want to show uniqueness of the IVP problem.  
 
First we show that \(\eta(t) \) satisfies the setting of 4a above for every fix \( x \in S^1 \).
 
First we show that \(\eta(t) \) satisfies the setting of 4a above for every fix \( x \in S^1 \).

Revision as of 10:32, 29 December 2014

Problem 4a

Let \( T > 0,\eta \in C^{1}([0,T]), \phi \in C^{0}([0,T]) \), and assume that: $$ \frac{d}{dt}\eta(t) \leqslant \eta(t)\phi(t), \forall t \in [0,T] $$

Show that: $$\eta(t) \leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds}, \forall t \in [0,T] $$

Hint: consider \( \xi(t) := \eta(t) e^{-\int_{0}^{t} \phi(s) ds} \)

Solution

Using chain rule: $$ \frac{d}{dt} \xi(t) = \frac{d}{dt} (\eta(t) e^{-\int_{0}^{t} \phi(s) ds}) = (\frac{d}{dt} \eta(t)) e^{-\int_{0}^{t} \phi(s) ds} + \eta(t) (\frac{d}{dt} e^{-\int_{0}^{t} \phi(s) ds}) = (\frac{d}{dt} \eta(t)) e^{-\int_{0}^{t} \phi(s) ds} - \eta(t) \phi(t)e^{-\int_{0}^{t} \phi(s) ds}$$

Substituting \( \eta(t) = \xi(t) e^{\int_{0}^{t} \phi(s) ds} \) in our assumption, then we get \( \forall t \in [0,T] \):

$$ \begin{align} \frac{d}{dt}\eta(t) &\leqslant \eta(t)\phi(t) \\ \frac{d}{dt}(\xi(t) e^{\int_{0}^{t} \phi(s) ds}) &\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\ (\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds} + \xi(t) \frac{d}{dt}(e^{\int_{0}^{t} \phi(s) ds})&\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\ (\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds} + \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t)&\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\ (\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds}&\leqslant 0 \\ \frac{d}{dt}\xi(t) &\leqslant 0 \\ \end{align} $$ , where we used in the last step that \(\forall x: e^{x}>0 \).

Now integrating the result from 0 to t and since \(g(x) \leqslant h(x) \Rightarrow \int g(x) dx \leqslant \int h(x) dx \):

$$ \begin{align} \int_{0}^{t} \frac{d}{dt'}\xi(t') dt' = \xi(t) - \xi(0) &\leqslant 0 = \int_{0}^{t} 0 dx \\ \eta(t) e^{-\int_{0}^{t} \phi(s) ds}-\eta(0) e^{-\int_{0}^{0} \phi(s) ds} &\leqslant 0 \\ \eta(t) e^{-\int_{0}^{t} \phi(s) ds}-\eta(0) e^{0} &\leqslant 0 \\ \eta(t) e^{-\int_{0}^{t} \phi(s) ds}&\leqslant \eta(0) \\ \eta(t) &\leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds} \\ \end{align} $$

Prblem 4b

Consider the initial value problem (IVP) $$ \begin{align} \frac{\partial}{\partial t} u(x,t)-\frac{1}{2} \frac{\partial^2}{\partial x^2} u(x,t) &= (u(x,t))^2 \\ u(x,0) &= u_0(x) \in C^2(S^1) \\ \end{align} $$

i) Show that, if \(u,v \in C^2(S^1 \times [0,T]) \) are two solutions of (IVP) for the same \(T>0\), then \(u \equiv v \) on \( S^1 \times [0,T] \)

Hint: consider \(\eta(t):=\int_0^{2\pi} (u(x,t)-v(x,t))^2 dx \)

ii) Give an explicit solution of (IVP) for constant initial data \(u_0 \equiv w_0 \in \mathbb{R} \).

iii) Conclude that, then there is initial data for (IVP) for which no global solution \( u \in C^2(S^1 \times [0,\inf)) \) exists.

Solution i)

We want to show uniqueness of the IVP problem. First we show that \(\eta(t) \) satisfies the setting of 4a above for every fix \( x \in S^1 \).

Proof: We can change integral and differential in the second line, because \((u(x,t)-v(x,t))^2-(u(x,t_0)-v(x,t_0))^2)/(t-t_0) \leqslant g(x) \) is integrable by mean value theorem, compactness of \(S^1 \times [0,T] \) and dominated convergence theorem. (The details are not worth being discussed here. I think the task's focus does not lie on that step.) For the following denote: \(u(x,t)=u \), \(v(x,t)=v\). $$ \begin{align} \frac{d}{dt} \eta(t)&=\frac{d}{dt}\int_0^{2\pi} (u-v)^2 dx \\ &=\int_0^{2\pi}\frac{\partial}{\partial t} (u-v)^2 dx \\ &=\int_0^{2\pi} 2(u-v) (\frac{\partial}{\partial t}u -\frac{\partial}{\partial t}v) dx \\ &=\int_0^{2\pi} 2(u-v) ( u^2+\frac{1}{2} \frac{\partial^2}{\partial x^2}u - v^2-\frac{1}{2} \frac{\partial^2}{\partial x^2}v) dx \\ &=\int_0^{2\pi} 2(u-v) ( u^2- v^2)+2(u-v)(\frac{1}{2} \frac{\partial^2}{\partial x^2}u-\frac{1}{2} \frac{\partial^2}{\partial x^2}v) dx \\ &=\int_0^{2\pi} 2(u-v)^2 (u+v) dx +\int_0^{2\pi}(u-v)\frac{\partial^2}{\partial x^2}(u-v) dx \\ \end{align} $$

Since \(u,v\) are \(2\pi\)-periodic, the second integral using integrating by parts resolves to: $$ \int_0^{2\pi}(u-v)\frac{\partial^2}{\partial x^2}(u-v) dx=-\int_0^{2\pi}\frac{\partial}{\partial x}(u-v)\frac{\partial}{\partial x}(u-v) dx=-\int_0^{2\pi}(\frac{\partial}{\partial x}(u-v))^2 dx \leqslant 0 $$

So we get: $$ \frac{d}{dt}\eta(t) \leqslant 2\int_0^{2\pi}(u-v)^2 (u+v) dx \leqslant 2\int_0^{2\pi}(u-v)^2 (u_{max}+v_{max}) dx = 2 (u_{max}+v_{max})\int_0^{2\pi}(u-v)^2 dx= \phi(t)\eta(t) $$ , where \(\phi(t):=2(u_{max}+v_{max}) \) and \( u_{max}:=max\{|u(x,t)|: (x,t) \in [0,2\pi] \times [0,T]\} \). (Maximum exists, because \([0,2\pi] \times [0,T] \) is compact and \(u,v\) continuous)


Since now all contitions of problem 4a are satisfied, apply proposition 4a: $$ \begin{align} \eta(t) &\leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds} \\ 0 \leqslant \int_0^{2\pi}(u(x,t)-v(x,t))^2 dx &\leqslant \int_0^{2\pi}(u(x,0)-v(x,0))^2 dx e^{\int_{0}^{t} \phi(s) ds} = \int_0^{2\pi}(u_0(x)-v_0(x))^2 dx e^{\int_{0}^{t} \phi(s) ds}=0 \\ \end{align} $$ ,since \(u_0(x)=v_0(x) \). We can now conclude that \(u \equiv v\).