Difference between revisions of "Aufgaben:Problem 14"

From Ferienserie MMP2
Jump to: navigation, search
(Problem 4a)
Line 1: Line 1:
 +
=Problem 4a=
 +
Let \( T > 0,\eta \in C^{1}([0,T]), \phi \in C^{0}([0,T]) \), and assume that:
 +
$$ \frac{d}{dt}\eta(t) \leqslant \eta(t)\phi(t), \forall t \in [0,T] $$
  
 +
Show that:
 +
$$\eta(t) \leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds}, \forall t \in [0,T] $$
 +
 +
''Hint'': consider  \( \xi(t) := \eta(t) e^{-\int_{0}^{t} \phi(s) ds} \)
 +
 +
=Solution=
 +
Using chain rule:
 +
$$ \frac{d}{dt} \xi(t) = \frac{d}{dt} (\eta(t) e^{-\int_{0}^{t} \phi(s) ds}) = (\frac{d}{dt} \eta(t)) e^{-\int_{0}^{t} \phi(s) ds} + \eta(t) (\frac{d}{dt} e^{-\int_{0}^{t} \phi(s) ds}) = (\frac{d}{dt} \eta(t)) e^{-\int_{0}^{t} \phi(s) ds} - \eta(t) \phi(t)e^{-\int_{0}^{t} \phi(s) ds})$$
 +
 +
Substituting \( \eta(t) = \xi(t) e^{\int_{0}^{t} \phi(s) ds} \) in our assumption, then we get \( \forall t \in [0,T] \):
 +
 +
$$
 +
\begin{align}
 +
\frac{d}{dt}\eta(t) &\leqslant \eta(t)\phi(t) \\
 +
\frac{d}{dt}(\xi(t) e^{\int_{0}^{t} \phi(s) ds}) &\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\
 +
(\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds} + \xi(t) \frac{d}{dt}(e^{\int_{0}^{t} \phi(s) ds})&\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\
 +
(\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds} + \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t)&\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\
 +
(\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds}&\leqslant 0 \\
 +
\frac{d}{dt}\xi(t) &\leqslant 0 \\
 +
\end{align}
 +
$$
 +
, where we used in the last step that \(\forall x: e^{x}>0 \).
 +
 +
Now integrating the result from 0 to t and since \(g(x) \leqslant h(x) \Rightarrow \int g(x) dx \leqslant \int h(x) dx \):
 +
 +
$$
 +
\begin{align}
 +
\int_{0}^{t} \frac{d}{dt'}\xi(t') dt' = \xi(t) - \xi(0) &\leqslant 0 = \int_{0}^{t} 0 dx \\
 +
\eta(t) e^{-\int_{0}^{t} \phi(s) ds}-\eta(0) e^{-\int_{0}^{0} \phi(s) ds} &\leqslant 0 \\
 +
\eta(t) e^{-\int_{0}^{t} \phi(s) ds}-\eta(0) e^{0} &\leqslant 0 \\
 +
\eta(t) e^{-\int_{0}^{t} \phi(s) ds}&\leqslant \eta(0) \\
 +
\eta(t) &\leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds} \\
 +
\end{align}
 +
$$

Revision as of 15:49, 26 December 2014

Problem 4a

Let \( T > 0,\eta \in C^{1}([0,T]), \phi \in C^{0}([0,T]) \), and assume that: $$ \frac{d}{dt}\eta(t) \leqslant \eta(t)\phi(t), \forall t \in [0,T] $$

Show that: $$\eta(t) \leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds}, \forall t \in [0,T] $$

Hint: consider \( \xi(t) := \eta(t) e^{-\int_{0}^{t} \phi(s) ds} \)

Solution

Using chain rule: $$ \frac{d}{dt} \xi(t) = \frac{d}{dt} (\eta(t) e^{-\int_{0}^{t} \phi(s) ds}) = (\frac{d}{dt} \eta(t)) e^{-\int_{0}^{t} \phi(s) ds} + \eta(t) (\frac{d}{dt} e^{-\int_{0}^{t} \phi(s) ds}) = (\frac{d}{dt} \eta(t)) e^{-\int_{0}^{t} \phi(s) ds} - \eta(t) \phi(t)e^{-\int_{0}^{t} \phi(s) ds})$$

Substituting \( \eta(t) = \xi(t) e^{\int_{0}^{t} \phi(s) ds} \) in our assumption, then we get \( \forall t \in [0,T] \):

$$ \begin{align} \frac{d}{dt}\eta(t) &\leqslant \eta(t)\phi(t) \\ \frac{d}{dt}(\xi(t) e^{\int_{0}^{t} \phi(s) ds}) &\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\ (\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds} + \xi(t) \frac{d}{dt}(e^{\int_{0}^{t} \phi(s) ds})&\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\ (\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds} + \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t)&\leqslant \xi(t) e^{\int_{0}^{t} \phi(s) ds}\phi(t) \\ (\frac{d}{dt}\xi(t)) e^{\int_{0}^{t} \phi(s) ds}&\leqslant 0 \\ \frac{d}{dt}\xi(t) &\leqslant 0 \\ \end{align} $$ , where we used in the last step that \(\forall x: e^{x}>0 \).

Now integrating the result from 0 to t and since \(g(x) \leqslant h(x) \Rightarrow \int g(x) dx \leqslant \int h(x) dx \):

$$ \begin{align} \int_{0}^{t} \frac{d}{dt'}\xi(t') dt' = \xi(t) - \xi(0) &\leqslant 0 = \int_{0}^{t} 0 dx \\ \eta(t) e^{-\int_{0}^{t} \phi(s) ds}-\eta(0) e^{-\int_{0}^{0} \phi(s) ds} &\leqslant 0 \\ \eta(t) e^{-\int_{0}^{t} \phi(s) ds}-\eta(0) e^{0} &\leqslant 0 \\ \eta(t) e^{-\int_{0}^{t} \phi(s) ds}&\leqslant \eta(0) \\ \eta(t) &\leqslant \eta(0)e^{\int_{0}^{t} \phi(s) ds} \\ \end{align} $$