Difference between revisions of "Aufgaben:Problem 12"

From Ferienserie MMP2
Jump to: navigation, search
(Solution)
Line 46: Line 46:
 
where for the last equality we used the Schwarz's theorem. With the induction assumption everything follows. \( \square \)
 
where for the last equality we used the Schwarz's theorem. With the induction assumption everything follows. \( \square \)
  
We then finish the proof as follows:
+
'''Lemma 2:''' Let \( f \in \mathcal{S}(\mathbb{R}) \) and \( \lambda (k) \in C^{\infty} \) be a function only depending on k. Then: \( \left( \frac{d}{dk} \right)^{n} \lambda (k) \hat f(k) = \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n \lambda (k) f(x) e^{-ikx} dx \).
  
$$ \sqrt{2\pi} \hat \Phi_n(k) =^{\color{red}{*}} i^n e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n \int_{\mathbb{R} } e^{-x^2 + \frac{1}{2}(x - ik)^2} dx = i^n \sqrt{2\pi} e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n e^{-k^2} = (-i)^n \sqrt{2\pi} \Phi_n(k) $$
+
''Proof.''
  
Where for the first equality we used Lemma 2 and for the second equation (3.14). \( \square \)
+
\( \vdash \) : \( \mathcal{S}(\mathbb{R}) \subset L^1( \mathbb{R} ) \)
  
\( \color{red}{* \: see \: discussion}\)
+
From Series 11, Ex. 1 we know:
  
'''Lemma 2:''' \( \frac{d}{dk} \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{d}{dk} f(x) e^{-ikx} dx \) where \( f(x) = e^{- \frac{1}{2} x^2} \).
+
$$ \left| f(x) \right| \leq \frac{C}{(1 + \vert x \vert^2)} $$
  
''Proof of Lemma 2:''
+
for some \( C \in \mathbb{R} \) and thus:  
  
''We've already shown this in Series 10, Exercise 3.''
+
$$ \int_{\mathbb{R}}  \left| f(x) \right| dx \leq \int_{\mathbb{R}}  \left| \frac{C}{(1 + \vert x \vert^2)} \right| dx < \infty $$
  
$$ \sqrt{2\pi} \frac{d}{dk} \hat f(k) = \lim_{n \rightarrow \infty} \int_{\mathbb{R}} \frac{1}{h_n} e^{- \frac{x^2}{2} - ikx} \left( e^{-ixh_n} - 1 \right) dx $$
+
Now, we use an induction argument for \( \left( \frac{d}{dk} \right)^n \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n f(x) e^{-ikx} dx \):
  
where \(h_n\) is an arbitrary zero-sequence and we used the definition of \( \frac{d}{dk} \) as limit of the difference quotient, the definition of \( \hat f(k) \) and linearity of the integral.
+
\( n = 0 \) is the trivial case.
  
We then use \( \vert \sin(x) \vert \leq \vert x \vert \) (this follows directly from \( \left| \operatorname{sinc}(x) \right| \leq 1 \)) and get:
+
\( n - 1 \rightarrow n: \)  
  
$$ \begin{align}
+
Let \( h_n \) be an arbitrary zero-sequence.
\left| \frac{1}{h_n} e^{- \frac{x^2}{2} - ikx} \left( e^{-ixh_n} - 1 \right) \right| &= e^{- \frac{x^2}{2}} \frac{1}{h_n} \left| e^{-ikx} e^{-\frac{ixh_n}{2}} \left( e^{- \frac{ixh_n}{2} } - e^{\frac{ixh_n}{2}} \right) \right| \\
+
&= e^{- \frac{x^2}{2}} \frac{2}{h_n} \left| \sin \left( \frac{xh_n}{2} \right) \right| \leq \frac{2}{h_n} \left| \frac{xh_n}{2} \right| e^{-\frac{x^2}{2}} \\
+
&= \vert x \vert e^{-\frac{x^2}{2}}
+
\end{align} $$
+
  
and with the Lebesgue dominated convergence theorem the claim holds. \( \square \)
+
$$ \sqrt{2\pi} \left( \frac{d}{dk} \right)^{n} \hat f(k) =  \sqrt{2\pi} \frac{d}{dk} \left( \frac{d}{dk} \right)^{n-1} \hat f(k) = \lim_{n \rightarrow \infty} \int_{\mathbb{R}} \frac{1}{h_n} \left( \frac{d}{dk} \right)^{n-1} f(x) e^{ - ikx} \left( e^{-ixh_n} - 1 \right) dx $$
 +
 +
$$ \left| \frac{1}{h_n} \left( \frac{d}{dk} \right)^{n-1} f(x) e^{-ikx} \left( e^{-i h_n x} - 1 \right) \right| = \left| \frac{2}{h_n} f(x) \sin \left( \frac{xh_n}{2} \right) \left( \frac{d}{dk} \right)^{n-1} e^{-ikx} \right| \leq \left| x \cdot f(x)  \left( \frac{d}{dk} \right)^{n-1} e^{-ikx} \right| = \left| p(x) f(x) \right| \in L^1 $$
  
'''Lemma 3(revisited):''' Let \( f(x) = e^{- \frac{1}{2} x^2} \) and \(\lambda (k)\) be an arbitrary function depending only on k, \( \lambda (k) \in C^{\infty}\) and \( g(k,x) = e^{-ikx} \)
+
where \( p(x) \in \mathbb{C}[x] \). This holds since \( f \in \mathcal{S}(\mathbb{R}) \).
  
$$ \vdash \left( \frac{d}{dk}\right)^{n} \lambda (k) \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left( \frac{1}{dk} \right)^{n} \lambda (k) f(x) e^{-ikx}dx $$ 
+
We now use the generalized Leibniz-rule to show:
 
+
$$ \left( \frac{d}{dk} \right)^{n}\left(\lambda (k) \hat f(k) \right) =  \frac{1}{\sqrt{2\pi}} \left(\frac{d}{dk}\right)^{n}\left(\lambda (k) \int_\mathbb{R} f(x) e^{-ikx} dx \right) $$
+
 
+
Since \( \lambda (k) \) is constant under variation of x
+
 
+
$$ \to \frac{1}{\sqrt{2\pi}} \left(\frac{d}{dk}\right)^{n} \int_\mathbb{R} \lambda (k) f(x) e^{-ikx} dx $$
+
 
+
now use \(  \frac{1}{\sqrt{2\pi}} \left(\frac{d}{dk}\right)^{n-1}\left(\frac{d}{dk}\right) \int_\mathbb{R} \lambda (k) f(x) e^{-ikx} dx \) and show for any \( n \) and with the Dominated Convergence Theorem that the claim holds.
+
  
 
$$\begin{align}
 
$$\begin{align}
\int_\mathbb{R} \left(\frac{d}{dk}\right)^{n} \lambda (k) f(x) e^{-ikx}dx &= \int_\mathbb{R} f(x) \left(\frac{d}{dk}\right)^{n}\left(\lambda (k)e^{-ikx} \right) dx \\
+
\int_\mathbb{R} \left(\frac{d}{dk}\right)^{n} \lambda (k) f(x) e^{-ikx}dx &= \sum_{j=0}^{n} \binom{n}{j}\left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \left( \frac{d}{dk} \right)^{n - j} \int_\mathbb{R} f(x) e^{-ikx} dx \\
^{L.R} &= \int_\mathbb{R} f(x) \sum_{j=0}^{n} \binom{n}{j}\lambda^{(k)} g^{(n-k)}dx \\
+
&= \sum_{j=0}^{n} \binom{n}{j} \left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \int_\mathbb{R} \left( \frac{d}{dk} \right)^{n - j} f(x) e^{-ikx} dx \\
&= \int_\mathbb{R} \sum_{j=0}^{n} f(x) \binom{n}{j}\lambda^{(k)} g^{(n-k)}dx
+
&= \sum_{j=0}^{n} \int_\mathbb{R} \binom{n}{j} \left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \left( \frac{d}{dk} \right)^{n - j} f(x) e^{-ikx} dx \\
 +
&= \int_\mathbb{R} \sum_{j=0}^{n} \binom{n}{j} \left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \left( \frac{d}{dk} \right)^{n - j} f(x) e^{-ikx} dx \\
 +
&= \int_\mathbb{R} \left( \frac{d}{dk} \right)^n \lambda (k) f(x) e^{-ikx} dx
 
\end{align}$$
 
\end{align}$$
  
Since each term in the sum converges (it differs only by a constant from the term in Lemma 2) we can exchange the sum and the integral which gives as the following:
+
And the Lemma is proven. \( \square \)
  
$$\begin{align}
+
From this Lemma follows directly for \( f(x) = e^{- \frac{x^2}{2} } \in \mathcal{S}(\mathbb{R}) \) and \( e^{-\frac{k^2}{2}} \in C^{\infty} \)
\sum_{j=0}^{n} \binom{n}{j} \int_\mathbb{R} f(x) \lambda^{(j)} g^{(n-j)}dx &= \sum_{j=0}^{n} \binom{n}{j} \int_\mathbb{R} f(x) \left( -ik \right)^{n-j} \lambda (k)^{(j)} g(k,x) dx \\
+
&= \sum_{j=0}^{n} \left( ik \right)^{(n-j)} \lambda{(j)} \int_\mathbb{R} f(x)g(k,x)dx
+
\end{align} $$
+
  
 +
$$ \left( \frac{d}{dk} \right)^n e^{\frac{-k^2}{2}} \hat f(k) = \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n e^{- \frac{k^2}{2} - x^2 + \frac{1}{2}x^2 - ikx} dx = \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n e^{- x^2 + \frac{1}{2} (x - ik)^2 }  dx $$
  
'''Lemma 3:''' Let \( f(x) = e^{- \frac{1}{2} x^2} \) and \( \lambda (k) \) be an arbitrary function just depending on k. Then: \( \left( \frac{d}{dk} \right)^{n} \lambda (k) \hat f(k) = \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n \lambda (k) f(x) e^{-ikx} dx \).
+
We then finish the proof as follows:
  
''Proof of Lemma 3: ''
+
$$ \sqrt{2\pi} \hat \Phi_n(k) =^{\color{red}{*}} i^n e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n \int_{\mathbb{R} } e^{-x^2 + \frac{1}{2}(x - ik)^2} dx = i^n \sqrt{2\pi} e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n e^{-k^2} = (-i)^n \sqrt{2\pi} \Phi_n(k) $$
  
$$ \begin{align}
+
Where for the first equality we used Lemma 2 and for the second equation (3.14). \( \square \)
\frac{d}{dk} \lambda (k) \hat f(k) &= \frac{1}{\sqrt{2\pi}} \frac{d}{dk} \lambda (k) \int_{\mathbb{R}}  f(x) e^{-ikx} dx \\
+
&= \frac{1}{\sqrt{2\pi}} \left( \frac{d}{dk} \lambda (k) \right) \int_{\mathbb{R}}  f(x) e^{-ikx} dx + \frac{1}{\sqrt{2\pi}} \lambda (k) \int_{\mathbb{R}}  \frac{d}{dk} f(x) e^{-ikx} dx \\
+
&=  \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \left( \frac{d}{dk} \lambda (k) \right) f(x) e^{-ikx} + \lambda (k) \frac{d}{dk} f(x) e^{-ikx} dx \\
+
&= \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \frac{d}{dk} \lambda (k) f(x) e^{-ikx} dx
+
\end{align} $$
+
  
concluding the prove. \( \square \)
+
\( \color{red}{* \: see \: discussion}\)
 
+
From this follows directly
+
 
+
$$ \frac{d}{dk} e^{\frac{-k^2}{2}} \hat f(k) = \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \frac{d}{dk} e^{- \frac{k^2}{2} - x^2 + \frac{1}{2}x^2 - ikx} dx = \frac{1}{\sqrt{2\pi}}  \int_{\mathbb{R}} \frac{d}{dk} e^{- x^2 + \frac{1}{2} (x - ik)^2 }  dx $$
+
 
+
''Generalization of Lemma 2:''
+
 
+
$$ \left| \frac{1}{h} \left( \frac{d}{dk} \right)^{n-1} f(x) e^{-ikx} \left( e^{-ihx} - 1 \right) \right| = \left| \frac{2}{h} f(x) \sin (\frac{xh}{2}) \left( \frac{d}{dk} \right)^{n-1} e^{-ikx} \right| \leq \left| x f(x)  \left( \frac{d}{dk} \right)^{n-1} e^{-ikx} \right| = \left| p(x) f(x) \right| \in L^1 $$
+
 
+
where \( p(x) \in \mathbb{C}[x] \). This holds since \( f \in \mathcal{S}(\mathbb{R}) \). \( \square \)
+
  
''Generalization of Lemma 3:'' Use generalized Leibniz rule.
 
  
''Nice to know, to be checked if necessary to know by heart:'' Gaussian-function is a Schwatz-fct., Polynomial times Schwartz-function is a Schwartz-function, Schwatz-space subspace of L1 (to be found in Felder-Script).
 
  
 
==Part b) ==  
 
==Part b) ==  

Revision as of 11:07, 31 December 2014

Part a)

Let \( \Phi_0(x) = e^{-\frac{1}{2}x^2} \) and define \( \Phi_n(x) = (-1)^n e^{\frac{1}{2}x^2}\left(\left(\frac{d}{dx}\right)^n e^{-x^2}\right) \). Show that \( \hat \Phi_n(k) = C\Phi_n(k)\), with \( C = C(n) \in \mathbb{C} \).

Solution

We show this by proving that \( \Phi_n(x) \) is an eigenfunction of the Fourier-transform with eigenvalue \((-i)^n \), i.e. \( \hat \Phi_n(k) = (-i)^n\Phi_n(k).\)

Proof.

We first check the case \( \hat \Phi_0(k) \) (you don't have to know this calculation, we did that in Series 8, ex. 3) where we complete the square in the exponent by using the substitution \( \eta \equiv \frac{x + ik}{\sqrt{2}} \):

$$ \hat \Phi_0(k) = \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R} } e^{-\frac{1}{2}x^2} e^{-ikx} dx = \frac{\sqrt{2}}{\sqrt{2\pi}} \int_{\mathbb{R} } e^{-\eta^2 - \frac{k^2}{2}} d\eta = e^{-\frac{1}{2} k^2} = \Phi_0(k) \tag{3.14} $$

For the general case:

$$ \sqrt{2\pi} \hat \Phi_n(k) = \int_{\mathbb{R} } (-1)^n e^{\frac{1}{2}x^2} \Big( (\frac{d}{dx})^n e^{-x^2} \Big) e^{-ikx} dx = \int_{\mathbb{R} } e^{-x^2} \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}x^2 - ikx} dx $$

where we partially integrated. The first term of each partial integration is zero since:

$$ \left| \left( \frac{d}{dx} \right)^m e^{\frac{1}{2}x^2 - ikx} \left( \left(\frac{d}{dx}\right)^l e^{-x^2} \right) \right| = \left| p(x) e^{-\frac{1}{2}x^2-ikx}\right| = \left| p(x)\right| e^{-\frac{1}{2}x^2} $$

where \( p(x) = \mathcal{O}(x^j) \) (using the Landau notation) is a (complex) polynomial in \( x \) and \(l, m, j \in \mathbb{N}, \) leading to

$$ \left( \frac{d}{dx} \right)^m e^{\frac{1}{2}x^2 - ikx} \left( \left(\frac{d}{dx}\right)^l e^{-x^2} \right)\bigg \vert_{-\infty}^{\infty} = 0 $$

since $$ \left| p(x) \right| e^{-\frac{1}{2}x^2} \bigg \vert_{-\infty} = \left| p(x) \right| e^{-\frac{1}{2}x^2} \bigg \vert_{\infty} = 0. $$

We then go on like this:

$$ \sqrt{2\pi} \hat \Phi_n(k) = e^{\frac{1}{2}k^2} \int_{\mathbb{R} } e^{-x^2} \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}(x - ik)^2} dx = i^n e^{\frac{1}{2}k^2} \int_{\mathbb{R} } e^{-x^2} \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} dx $$

where we completed the square in the exponent and then used the following lemma:

Lemma 1: \( \forall n \in \mathbb{Z}_{\geqslant 0}: i^n \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} = \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}(x - ik)^2} \)

Proof of Lemma 1:

By induction.

\( n = 0 \) : \( i^0 e^{\frac{1}{2}(x - ik)^2} = e^{\frac{1}{2}(x - ik)^2} \) is the trivial case.

\( n-1 \rightarrow n \) :

$$ i^n \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \Big( \frac{d}{dk} \Big)^{n-1} i (-i) (x-ik) e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \Big( \frac{d}{dk} \Big)^{n-1} (x-ik) e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \Big( \frac{d}{dk} \Big)^{n - 1} \frac{d}{dx} e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \frac{d}{dx} \Big( \frac{d}{dk} \Big)^{n - 1} e^{\frac{1}{2}(x - ik)^2} $$

where for the last equality we used the Schwarz's theorem. With the induction assumption everything follows. \( \square \)

Lemma 2: Let \( f \in \mathcal{S}(\mathbb{R}) \) and \( \lambda (k) \in C^{\infty} \) be a function only depending on k. Then: \( \left( \frac{d}{dk} \right)^{n} \lambda (k) \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n \lambda (k) f(x) e^{-ikx} dx \).

Proof.

\( \vdash \) : \( \mathcal{S}(\mathbb{R}) \subset L^1( \mathbb{R} ) \)

From Series 11, Ex. 1 we know:

$$ \left| f(x) \right| \leq \frac{C}{(1 + \vert x \vert^2)} $$

for some \( C \in \mathbb{R} \) and thus:

$$ \int_{\mathbb{R}} \left| f(x) \right| dx \leq \int_{\mathbb{R}} \left| \frac{C}{(1 + \vert x \vert^2)} \right| dx < \infty $$

Now, we use an induction argument for \( \left( \frac{d}{dk} \right)^n \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n f(x) e^{-ikx} dx \):

\( n = 0 \) is the trivial case.

\( n - 1 \rightarrow n: \)

Let \( h_n \) be an arbitrary zero-sequence.

$$ \sqrt{2\pi} \left( \frac{d}{dk} \right)^{n} \hat f(k) = \sqrt{2\pi} \frac{d}{dk} \left( \frac{d}{dk} \right)^{n-1} \hat f(k) = \lim_{n \rightarrow \infty} \int_{\mathbb{R}} \frac{1}{h_n} \left( \frac{d}{dk} \right)^{n-1} f(x) e^{ - ikx} \left( e^{-ixh_n} - 1 \right) dx $$

$$ \left| \frac{1}{h_n} \left( \frac{d}{dk} \right)^{n-1} f(x) e^{-ikx} \left( e^{-i h_n x} - 1 \right) \right| = \left| \frac{2}{h_n} f(x) \sin \left( \frac{xh_n}{2} \right) \left( \frac{d}{dk} \right)^{n-1} e^{-ikx} \right| \leq \left| x \cdot f(x) \left( \frac{d}{dk} \right)^{n-1} e^{-ikx} \right| = \left| p(x) f(x) \right| \in L^1 $$

where \( p(x) \in \mathbb{C}[x] \). This holds since \( f \in \mathcal{S}(\mathbb{R}) \).

We now use the generalized Leibniz-rule to show:

$$\begin{align} \int_\mathbb{R} \left(\frac{d}{dk}\right)^{n} \lambda (k) f(x) e^{-ikx}dx &= \sum_{j=0}^{n} \binom{n}{j}\left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \left( \frac{d}{dk} \right)^{n - j} \int_\mathbb{R} f(x) e^{-ikx} dx \\ &= \sum_{j=0}^{n} \binom{n}{j} \left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \int_\mathbb{R} \left( \frac{d}{dk} \right)^{n - j} f(x) e^{-ikx} dx \\ &= \sum_{j=0}^{n} \int_\mathbb{R} \binom{n}{j} \left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \left( \frac{d}{dk} \right)^{n - j} f(x) e^{-ikx} dx \\ &= \int_\mathbb{R} \sum_{j=0}^{n} \binom{n}{j} \left( \left( \frac{d}{dk} \right)^j \lambda (k) \right) \left( \frac{d}{dk} \right)^{n - j} f(x) e^{-ikx} dx \\ &= \int_\mathbb{R} \left( \frac{d}{dk} \right)^n \lambda (k) f(x) e^{-ikx} dx \end{align}$$

And the Lemma is proven. \( \square \)

From this Lemma follows directly for \( f(x) = e^{- \frac{x^2}{2} } \in \mathcal{S}(\mathbb{R}) \) and \( e^{-\frac{k^2}{2}} \in C^{\infty} \)

$$ \left( \frac{d}{dk} \right)^n e^{\frac{-k^2}{2}} \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n e^{- \frac{k^2}{2} - x^2 + \frac{1}{2}x^2 - ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left( \frac{d}{dk} \right)^n e^{- x^2 + \frac{1}{2} (x - ik)^2 } dx $$

We then finish the proof as follows:

$$ \sqrt{2\pi} \hat \Phi_n(k) =^{\color{red}{*}} i^n e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n \int_{\mathbb{R} } e^{-x^2 + \frac{1}{2}(x - ik)^2} dx = i^n \sqrt{2\pi} e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n e^{-k^2} = (-i)^n \sqrt{2\pi} \Phi_n(k) $$

Where for the first equality we used Lemma 2 and for the second equation (3.14). \( \square \)

\( \color{red}{* \: see \: discussion}\)


Part b)

Let \( \chi_{[a,b]} \) be the characteristic function, \( a, b \in \mathbb{R}, a < b \). Show explicitly, i.e. without using Plancherel, that

$$ \Vert \hat \chi_{[a,b]} \Vert_2^2 = b - a. $$

Hint: You may use without proof that

$$ \int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2} $$


Solution

Nice to know: Plancherel's theorem states that for any function \( f \in L^2: \Vert \hat f \Vert_{2} = \Vert f \Vert_{2} \) where \( \Vert f \Vert_{2} = \left( \int_{\mathbb{R}} \vert f(x) \vert^2 dx \right)^{\frac{1}{2}} \)

But we show the identity like badasses by direct calculation.

We have: $$ \hat \chi_{[a,b]}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \chi_{[a,b]}(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{a}^b e^{-ikx} dx$$

Now we use the substitution \( y \equiv \frac{2(x-a)}{b-a} -1 \) to scale the integral to the interval \( \left[ -1, 1 \right] \). Thus:

$$ \begin{align} \hat \chi_{[a,b]}(k) &= \frac{(b-a)}{2\sqrt{2\pi}} e^{-ik \left( \frac{a+b}{2} \right)}\int_{-1}^{1} e^{-ik \frac{b-a}{2} y} dy \\ &= \frac{(b-a)}{2\sqrt{2\pi}} e^{-ik \left( \frac{a+b}{2} \right)} \left( \frac{-2}{ik(b-a)} e^{-\frac{ik(b-a)}{2}y} \bigg \vert_{-1}^{1} \right) \\ &= \frac{1}{\sqrt{2\pi}} e^{-ik \left( \frac{a+b}{2} \right)} \frac{1}{ik} \left( - e^{-ik\frac{(b-a)}{2}} + e^{ik \frac{b-a}{2}} \right) \\ &= \frac{\sqrt{2}}{k\sqrt{\pi}} e^{-ik \left( \frac{a+b}{2} \right)} \sin \left( \frac{b-a}{2} k \right) \end{align} $$


And so:

$$ \Vert \hat \chi_{[a,b]}(k) \Vert_2^2 = \int_{\mathbb{R} } |\hat \chi_{[a,b]}(k)|^2 dk = \frac{2}{\pi} \int_{\mathbb{R} } \frac{\sin^2(\frac{b-a}{2}k)}{k^2} dk $$

With the substitution \( \eta \equiv \frac{b-a}{2}k \) we get:

$$ \Vert \hat \chi_{[a,b]}(k) \Vert_2^2 = \frac{(b-a)}{\pi} \int_{\mathbb{R} } \frac{\sin^2(\eta)}{\eta^2} d\eta $$

It remains to evaluate the integral \( \int_{\mathbb{R} } \frac{\sin^2\left(\eta\right)}{\eta^2} d\eta \).

By using the identity \( \sin^2 \left( x \right) = \frac{1}{2} \left( 1 - \cos \left( 2x \right) \right) \) and partial integration we have

$$ \begin{align} \int_{\mathbb{R} } \frac{\sin^2\left(\eta\right)}{\eta^2} d\eta &= - \frac{1}{2\eta} \left( 1 - \cos \left( 2\eta \right) \right) \Bigg \vert_{- \infty}^{\infty} + \int_{\mathbb{R} } \frac{\sin \left(2\eta \right) }{\eta} d\eta \\ &= 2 \int_{0}^{\infty} \frac{\sin \left(2\eta \right) }{\eta} d\eta \\ &= 2 \int_{0}^{\infty} \frac{\sin\left( \xi \right)}{\xi} d\xi = \pi \end{align}$$

where obviously \( \left| \frac{1}{2\eta} \left( 1 - \cos \left( 2\eta \right) \right) \right| \leq \left| \frac{1}{\eta} \right| \rightarrow 0 \) for \( \eta \rightarrow \infty \).

The result therefore is:

$$ \Vert \hat \chi_{[a,b]}(k) \Vert_2^2 = b-a $$