Difference between revisions of "Aufgaben:Problem 12"

From Ferienserie MMP2
Jump to: navigation, search
m
Line 32: Line 32:
 
where we used the following  
 
where we used the following  
  
'''Lemma:''' \( \forall n \in \mathbb{Z}_{\geqslant 0}: i^n \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} = \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}(x - ik)^2} \)  
+
'''Lemma 1:''' \( \forall n \in \mathbb{Z}_{\geqslant 0}: i^n \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} = \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}(x - ik)^2} \)  
  
''Proof of Lemma:''
+
''Proof of Lemma 1:''
  
 
By induction.  
 
By induction.  
Line 46: Line 46:
 
where for the last equality we used the Schwarz's theorem. With the induction assumption everything follows. \( \square \)
 
where for the last equality we used the Schwarz's theorem. With the induction assumption everything follows. \( \square \)
  
The rest is a piece of cake:
+
'''Lemma 2:''' \( \frac{d}{dk} \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{d}{dk} f(x) e^{-ikx} dx \) where \( f(x) = e^{- \frac{1}{2} x^2 - ikx} \).
 +
 
 +
''Proof of Lemma 2:''
 +
 
 +
$$ \sqrt{2\pi} \frac{d}{dk} \hat f(k) = \lim_{h \rightarrow 0} \int_{\mathbb{R}} \frac{1}{h} e^{- \frac{x^2}{2} - ikx} \left( e^{-ixh} - 1 \right) dx $$
 +
 
 +
We use \( \vert \sin(\theta) \vert =  \vert x - \frac{x^3}{6} + \frac{x^5}{120} \pm\cdots \vert \leq \vert x \vert \) for
 +
 
 +
$$ \begin{align}
 +
\left| \frac{1}{h} e^{- \frac{x^2}{2} - ikx} \left( e^{-ixh} - 1 \right) \right| &= e^{- \frac{x^2}{2}} \frac{1}{h} \left| e^{-ihx} e^{-\frac{ixh}{2}} \left( e^{- \frac{ixh}{2} } - e^{frac{ixh}{2}} \right) \right| \\
 +
&= e^{- \frac{x^2}{2}} \frac{2}{h} \left| \sin \left( \frac{xh}{2} \right) \right| \leq \frac{2}{h} \vert \frac{xh}{2} \vert e^{-\frac{x^2}{2}} \\
 +
&= \vert x \vert e^{-\frac{x^2}{2}}
 +
\end{align} $$
 +
 
 +
and with the Lebesgue dominated convergence theorem the claim holds. \( \square \)
 +
 
 +
 
 +
 
 +
The rest is a piece of cake:  
  
 
$$ \sqrt{2\pi} \hat \Phi_n(k) = i^n e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n \int_{\mathbb{R} } e^{-x^2 + \frac{1}{2}(x - ik)^2} dx = i^n \sqrt{2\pi} e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n e^{-k^2} = (-i)^n \sqrt{2\pi} \Phi_n(k) $$  
 
$$ \sqrt{2\pi} \hat \Phi_n(k) = i^n e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n \int_{\mathbb{R} } e^{-x^2 + \frac{1}{2}(x - ik)^2} dx = i^n \sqrt{2\pi} e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n e^{-k^2} = (-i)^n \sqrt{2\pi} \Phi_n(k) $$  

Revision as of 14:19, 27 December 2014

Part a)

Let \( \Phi_0(x) = e^{-\frac{1}{2}x^2} \) and define \( \Phi_n(x) = (-1)^n e^{\frac{1}{2}x^2}\left(\left(\frac{d}{dx}\right)^n e^{-x^2}\right) \). Show that \( \hat \Phi_n(k) = C\Phi_n(k)\), with \( C = C(n) \in \mathbb{C} \).

Solution

We show this by proving the following claim:

\( \vdash : \Phi_n(x) = (-1)^n e^{\frac{1}{2}x^2} \Big(\frac{d}{dx}\Big)^n e^{-x^2}\) is an eigenfunction of the Fourier-transform with the eigenvalue \((-i)^n \).

Proof.

We first check the case \( \hat \Phi_0(k) \) where we complete the square in the exponent by using the substitution \( \eta \equiv \frac{x + ik}{\sqrt{2}} \):

$$ \hat \Phi_0(k) = \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R} } e^{-\frac{1}{2}x^2} e^{-ikx} dx = \frac{\sqrt{2}}{\sqrt{2\pi}} \int_{\mathbb{R} } e^{-\eta^2 - \frac{k^2}{2}} d\eta = e^{-\frac{1}{2} k^2} = \Phi_0(k) \tag{3.14} $$

For the general case:

$$ \sqrt{2\pi} \hat \Phi_n(k) = \int_{\mathbb{R} } (-1)^n e^{\frac{1}{2}x^2} \Big( (\frac{d}{dx})^n e^{-x^2} \Big) e^{-ikx} dx = \int_{\mathbb{R} } e^{-x^2} \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}x^2 - ikx} dx $$

where we partially integrated. The first term of each partial integration is zero since:

$$ \left| \left( \frac{d}{dx} \right)^m e^{\frac{1}{2}x^2 - ikx} \left( \left(\frac{d}{dx}\right)^l e^{-x^2} \right) \right| = \left| p(x) \right| e^{-\frac{1}{2}x^2} $$

where \( p(x) = \mathcal{O}(n^j) \) (using the Landau notation) and \(l, m, j \in \mathbb{N} \) leading to

$$ \left| p(x) \right| e^{-\frac{1}{2}x^2} \bigg \vert_{-\infty}^{\infty} = 0 $$

Furthermore

$$ \sqrt{2\pi} \Phi_n(k) = e^{\frac{1}{2}k^2} \int_{\mathbb{R} } e^{-x^2} \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}(x - ik)^2} dx = i^n e^{\frac{1}{2}k^2} \int_{\mathbb{R} } e^{-x^2} \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} dx $$

where we used the following

Lemma 1: \( \forall n \in \mathbb{Z}_{\geqslant 0}: i^n \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} = \Big( \frac{d}{dx} \Big)^n e^{\frac{1}{2}(x - ik)^2} \)

Proof of Lemma 1:

By induction.

\( n = 0 \) : \( i^0 e^{\frac{1}{2}(x - ik)^2} = e^{\frac{1}{2}(x - ik)^2} \) is the trivial case.

\( n-1 \rightarrow n \) :

$$ i^n \Big( \frac{d}{dk} \Big)^n e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \Big( \frac{d}{dk} \Big)^{n-1} i (-i) (x-ik) e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \Big( \frac{d}{dk} \Big)^{n-1} (x-ik) e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \Big( \frac{d}{dk} \Big)^{n - 1} \frac{d}{dx} e^{\frac{1}{2}(x - ik)^2} = i^{n-1} \frac{d}{dx} \Big( \frac{d}{dk} \Big)^{n - 1} e^{\frac{1}{2}(x - ik)^2} $$

where for the last equality we used the Schwarz's theorem. With the induction assumption everything follows. \( \square \)

Lemma 2: \( \frac{d}{dk} \hat f(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{d}{dk} f(x) e^{-ikx} dx \) where \( f(x) = e^{- \frac{1}{2} x^2 - ikx} \).

Proof of Lemma 2:

$$ \sqrt{2\pi} \frac{d}{dk} \hat f(k) = \lim_{h \rightarrow 0} \int_{\mathbb{R}} \frac{1}{h} e^{- \frac{x^2}{2} - ikx} \left( e^{-ixh} - 1 \right) dx $$

We use \( \vert \sin(\theta) \vert = \vert x - \frac{x^3}{6} + \frac{x^5}{120} \pm\cdots \vert \leq \vert x \vert \) for

$$ \begin{align} \left| \frac{1}{h} e^{- \frac{x^2}{2} - ikx} \left( e^{-ixh} - 1 \right) \right| &= e^{- \frac{x^2}{2}} \frac{1}{h} \left| e^{-ihx} e^{-\frac{ixh}{2}} \left( e^{- \frac{ixh}{2} } - e^{frac{ixh}{2}} \right) \right| \\ &= e^{- \frac{x^2}{2}} \frac{2}{h} \left| \sin \left( \frac{xh}{2} \right) \right| \leq \frac{2}{h} \vert \frac{xh}{2} \vert e^{-\frac{x^2}{2}} \\ &= \vert x \vert e^{-\frac{x^2}{2}} \end{align} $$

and with the Lebesgue dominated convergence theorem the claim holds. \( \square \)


The rest is a piece of cake:

$$ \sqrt{2\pi} \hat \Phi_n(k) = i^n e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n \int_{\mathbb{R} } e^{-x^2 + \frac{1}{2}(x - ik)^2} dx = i^n \sqrt{2\pi} e^{\frac{1}{2}k^2} \Big( \frac{d}{dk} \Big)^n e^{-k^2} = (-i)^n \sqrt{2\pi} \Phi_n(k) $$

(for the second last equality we've used equation (3.14)). \( \square \)

Part b)

Let \( \chi_{[a,b]} \) be the characteristic function, \( a, b \in \mathbb{R}, a < b \). Show explicitly, i.e. without using Plancherel, that

$$ \Vert \hat \chi_{[a,b]} \Vert_2^2 = b - a. $$

Hint: You may use without proof that

$$ \int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2} $$


Solution

Nice to know: Plancherel's theorem states that for any function \( f \in L^2: \Vert \hat f \Vert_{2} = \Vert f \Vert_{2} \) where \( \Vert f \Vert_{2} = \left( \int_{\mathbb{R}} \vert f(x) \vert^2 dx \right)^{\frac{1}{2}} \)

But we show the identity like badasses by direct calculation.

We have: $$ \hat \chi_{[a,b]} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \chi_{[a,b]}(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{a}^b e^{-ikx} dx$$

Now we use the substitution \( y \equiv \frac{2(x-a)}{b-a} -1 \) to scale the integral to the interval \( \left[ -1, 1 \right] \). Thus:

$$ \begin{align} \hat \chi_{[a,b]} &= \frac{(b-a)}{2\sqrt{2\pi}} e^{-ik \left( \frac{1}{2}b + \frac{3}{2}a \right)}\int_{-1}^{1} e^{-ik \frac{b-a}{2} y} dy \\ &= \frac{(b-a)}{2\sqrt{2\pi}} e^{-ik \left( \frac{1}{2}b + \frac{3}{2}a \right)} \left( \frac{-2}{ik(b-a)} e^{-\frac{ik(b-a)}{2}y} \bigg \vert_{-1}^{1} \right) \\ &= \frac{1}{\sqrt{2\pi}} e^{-ik \left( \frac{1}{2}b + \frac{3}{2}a \right)} \frac{1}{ik} \left( - e^{-ik\frac{(b-a)}{2}} + e^{ik \frac{b-a}{2}} \right) \\ &= \frac{\sqrt{2}}{k\sqrt{\pi}} e^{-ik \left( \frac{1}{2}b + \frac{3}{2}a \right)} \sin \left( \frac{b-a}{2} k \right) \end{align} $$


And so:

$$ \Vert \hat \chi_{[a,b]}(k) \Vert_2^2 = \int_{\mathbb{R} } |\hat \chi_{[a,b]}(k)|^2 dk = \frac{2}{\pi} \int_{\mathbb{R} } \frac{\sin^2(\frac{b-a}{2}k)}{k^2} dk $$

With the substitution \( \eta \equiv \frac{b-a}{2}k \) we get:

$$ \Vert \hat \chi_{[a,b]}(k) \Vert_2^2 = \frac{(b-a)}{\pi} \int_{\mathbb{R} } \frac{\sin^2(\eta)}{\eta^2} d\eta $$

It remains to evaluate the integral \( I(\alpha) = \int_{\mathbb{R} } \frac{\sin^2\left(\alpha \eta\right)}{\eta^2} d\eta \) at \( \alpha = 1 \).

$$ \frac{dI}{d\alpha} = 2 \int_{0}^{\infty} \frac{2 \eta \sin\left( \alpha \eta \right) \cos\left( \alpha \eta \right) }{\eta^2} $$ and with the identity $$ \sin(x) \cos(y) = \frac{1}{2}\Big(\sin (x-y) + \sin (x+y)\Big) $$ it follows that:

$$ \begin{align} \frac{dI}{d\alpha} &= 2 \int_{0}^{\infty} \frac{\sin\left( 2 \alpha \eta \right)}{\eta} d\eta \\ &= 2 \int_{0}^{\infty} \frac{\sin\left( \xi \right)}{\xi} d\xi = \pi \end{align} $$


Solving this equation is a thing we learned a long time ago:

\( I(\alpha) = \pi \alpha + c \) and since \( I(0) = 0: I(\alpha) = \pi \alpha \).

As \( I(1) = \pi \) the result is:

$$ \Vert \hat \chi_{[a,b]}(k) \Vert_2^2 = b-a $$