Difference between revisions of "Aufgaben:Problem 11"

From Ferienserie MMP2
Jump to: navigation, search
(Solution)
(Solution)
Line 48: Line 48:
 
Wenn jemand einen einfacheren Weg weiss, gebt mir bescheid. Ohne partiell Integrieren klappt das Theorem für dominierende Konvergenz nicht.
 
Wenn jemand einen einfacheren Weg weiss, gebt mir bescheid. Ohne partiell Integrieren klappt das Theorem für dominierende Konvergenz nicht.
  
Es gäbe wohl noch eine alternative über gleichmässige Konvergenz.
+
Ich bin noch an einem einfacheren Beweis mittels Funktionentheorie...
 
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 
<hr style="border:0;border-top:thin dashed #ccc;background:none;"/>
 
Proof:
 
Proof:

Revision as of 09:45, 27 December 2014

Problem a)

$$f(t)=e^{-|t|} \in L^1(\mathbb{R})$$

Compute the Fourier transform of \(f(t)\)

Solution

$$ \begin{align} \hat f(x) \ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm e^{-|t|}e^{-ixt}\,\mathrm dt \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \mathrm e^{t(1-ix)}\,\mathrm dt + \int_{0}^{\infty} \mathrm e^{-t(1+ix)}\,\mathrm dt \\ &= \frac{1}{\sqrt{2\pi}} \left[ \frac{1}{1-ix}e^{t(1-ix)} \bigg \vert_{t=-\infty}^{t=0} - \frac{1}{1+ix} e^{-t(1+ix)} \bigg \vert_{t=0}^{t=\infty} \right] \\ &= \frac{1}{\sqrt{2\pi}} \left[ \frac{2}{1+x^2} \right] \\ &= \sqrt{\frac{2}{\pi}} \frac{1}{1+x^2} \end{align} $$

Problem b)

Using the result from a), compute $$ \int_{0}^{\infty} \frac{1}{1+x^2} \,\mathrm dx $$ and $$ \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2}\,\mathrm dx \ , t>0 $$


Solution

by using inverse fourier transform $$ \begin{align} e^{-|t|} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{1+x^2} e^{ixt} \, dx \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{ixt}}{1+x^2} \, dx \\ &= \frac{1}{\pi} \int_{0}^{\infty} \frac{e^{ixt} + e^{-ixt}}{1+x^2} \, dx \\ &= \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx \end{align} $$

thus we can set t=0 and find

$$ \int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} $$


Claim: $$ \frac{d}{dt} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx = \int_{0}^{\infty} \frac{d}{dt} \frac{\cos(xt)}{1+x^2} \, dx $$

Wenn jemand einen einfacheren Weg weiss, gebt mir bescheid. Ohne partiell Integrieren klappt das Theorem für dominierende Konvergenz nicht.

Ich bin noch an einem einfacheren Beweis mittels Funktionentheorie...


Proof:

first make some definitions:

\(f(x,t) := \cos(xt) \) and \(g(x) := \frac{1}{1+x^2}\)

\( \partial^{-1}_x f(x) := \int_{0}^{x} f(x') \, dx' \)

use partial integration (additional term goes to \( 0 \)) $$ \int_{0}^{\infty} f(x,t)g(x) \, dx = -\int_{0}^{\infty} \partial^{-1}_x f(x,t) \partial_x g(x) \, dx \\ = \frac{2}{t} \int_{0}^{\infty} \frac{x \sin(xt)}{(1+x^2)^2} \, dx $$ define \( G(x,t) := \sin(xt) \) and by mean value theorem for \( h \ne 0 \) we find \( \xi(x) \) between \( 0 \) and \( h \) s.t.: $$ \frac{G(x,t+h)-G(x,t)}{h} = \partial_t G(x,t+\xi) \le |x| \\ \Rightarrow \bigg| \frac{G(x,t+h)-G(x,t)}{h} \frac{x}{(1+x^2)^2} \bigg| \le \frac{x^2}{(1+x^2)^2} \\ d_n(x,t) := \frac{G(x,t+h_n)-G(x,t)}{h_n} \frac{x}{(1+x^2)^2} $$ with sequence \( h_n \ne 0 \) converging to \( 0 \) we have integrable \( d_n(x) \) bounded by an integrable function.

with dominated convergence theorem it follows that we can take the limit inside the integral and get \( \partial_t \) under the integral.

We do again partial integration

$$ -\int_{0}^{\infty} \partial_t (\partial^{-1}_x f(x,t) \partial_x g(x)) \, dx = -\int_{0}^{\infty} \partial^{-1}_x \partial_t f(x,t) \partial_x g(x) \, dx = \int_{0}^{\infty} \partial_t(f(x,t)g(x)) \, dx $$

where the additional term from the partial integration goes to 0. Now we have proven the claim.


use the proof for \( t>0 \) $$ \begin{align} \ \frac{d}{dt} e^{-|t|} = \frac{d}{dt} \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx \\ \Leftrightarrow e^{-t} = \frac{2}{\pi} \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx \\ \Rightarrow \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx = \frac{\pi}{2} e^{-t} \\ \end{align} $$