Difference between revisions of "Aufgaben:Problem 11"

From Ferienserie MMP2
Jump to: navigation, search
(Solution)
(Solution)
Line 49: Line 49:
 
\begin{align}
 
\begin{align}
 
\ \frac{d}{dt} e^{-|t|} = \frac{d}{dt} \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx \\
 
\ \frac{d}{dt} e^{-|t|} = \frac{d}{dt} \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx \\
\text{TODO: warum unter integral differenzieren} \\
+
\text{TODO: warum unter integral differenzieren (Wohl mit dominated covergence theorem)} \\
 
\Leftrightarrow e^{-t} = \frac{2}{\pi} \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx \\
 
\Leftrightarrow e^{-t} = \frac{2}{\pi} \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx \\
 
\Rightarrow \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx = \frac{\pi}{2} e^{-t} \\
 
\Rightarrow \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx = \frac{\pi}{2} e^{-t} \\

Revision as of 08:52, 24 December 2014

Problem a)

$$f(t)=e^{-|t|} \in L^1(\mathbb{R})$$

Compute the Fourier transform of \(f(t)\)

Solution

$$ \begin{align} \hat f(x) \ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm e^{-|t|}e^{-ixt}\,\mathrm dt \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \mathrm e^{t(1-ix)}\,\mathrm dt + \int_{0}^{\infty} \mathrm e^{-t(1+ix)}\,\mathrm dt \\ &= \frac{1}{\sqrt{2\pi}} \left[ \frac{1}{1-ix}e^{t(1-ix)} \bigg \vert_{t=-\infty}^{t=0} - \frac{1}{1+ix} e^{-t(1+ix)} \bigg \vert_{t=0}^{t=\infty} \right] \\ &= \frac{1}{\sqrt{2\pi}} \left[ \frac{2}{1+x^2} \right] \\ &= \sqrt{\frac{2}{\pi}} \frac{1}{1+x^2} \end{align} $$

Problem b)

Using the result from a), compute $$ \int_{0}^{\infty} \frac{1}{1+x^2} \,\mathrm dx $$ and $$ \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2}\,\mathrm dx \ , t>0 $$


Solution

by using inverse fourier transform $$ \begin{align} e^{-|t|} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{1+x^2} e^{ixt} \, dx \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{ixt}}{1+x^2} \, dx \\ &= \frac{1}{\pi} \int_{0}^{\infty} \frac{e^{ixt} + e^{-ixt}}{1+x^2} \, dx \\ &= \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx \end{align} $$

thus we can set t=0

$$ \begin{align} 1 = \frac{2}{\pi} \int_{0}^{\infty} \frac{1}{1+x^2} \, dx \\ \Rightarrow \int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} \end{align} $$

for t>0

$$ \begin{align} \ \frac{d}{dt} e^{-|t|} = \frac{d}{dt} \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(xt)}{1+x^2} \, dx \\ \text{TODO: warum unter integral differenzieren (Wohl mit dominated covergence theorem)} \\ \Leftrightarrow e^{-t} = \frac{2}{\pi} \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx \\ \Rightarrow \int_{0}^{\infty} \frac{x \sin(xt)}{1+x^2} \, dx = \frac{\pi}{2} e^{-t} \\ \text{for } \ t>0 \end{align} $$